
UNCLASSIFIEDFrs
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE REDINSTRUCIONSBEFORE COMPLETEIN- FORM
1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)10113188 5. TYPE OF REPORT & PERIOD COVERED

Ada Language Commentaries May 26 1988 to June 23 1988

Volume 2 6. PERFORMING ORG. REPORT NUMBER

May 26 1988 - June 23 1988
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Ada Joint Program Office AREA & WORK UNIT NUMBERS

3D139 (1211 S. Fern, C-107)
The Pentagon, Washington DC 20301-3081

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office September 1988
United States Department of Defense 1NUMUER Ut PAL
Washington, DC 20301-3081 60+

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
AJPO UNCLASSIFIED

15a. R A FICATION/DOWNGRADING

N/A

16. DISTRIBUTION STATEMENT (ofthisReprt) unliited
Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

o UNCLASSIFIED

S 8. SUPPLEMENTARY NOTES

3. KEYWORDS (Continue on reverse side if necessary and identify by block number)
Ada Programming Language; Ada compiler validation capability; Ada standards;Ada commentaries;Ada
interpetations;ANSUMIL-STD-1815A.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

DO 1473 EDITION OF I NOV 65 IS OBSOLETE

I JN73 S,N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

CLEARANCY EQUEST FOR PUBLIC RELEASE OF DEPARTMENT OF DEFENSE INFORMATION

TO: Assistant Secrerary of Defense (PublcAffairs)

AlTN: Director, Freedom of Information & Security Review. Rm 2C757. Pentaaon
SEE INSTRUCTIONS ON REVERSE

(This form is to be used in refustin review and clearance of DoD information prosed for publk release in accordance with DoDD 5230.9.)

1. DOCUMENT DESCRIPTION

a. TYPE Report b. TITLE Ada Commentaries

c. PAGE COUNT 128 d. SUBJECT AREA Ada Programming Language

a, ME "s" Firs M0 b. RANK c. TITLE

d. OFFICE e. AGENCY

3 RENATIONIPUBLICATION DATA

This document contains information concerning the commentaries on the Ada language. The commentaries listed here
have been approved by the Ada Board. This information is being made available to the general public so that they may
better understand the changes being affected by the commentary process and that they may review those changes.

4. POINTOF CONTACT S. PRIOR COORDINATION

a. NAME (Last, First, MI) a. OFFICE

CASTOR, Virginia, L. Ada Joint Program Office
b. TELEPHONE NUMBER (Include Area Code) b. AGENCY
(202) 694-0210 R&AT
6. REMARKS

This document has been reviewed within the Ada Joint Program Office. It contains no sensitive or classified information.

884440
7.RECOMMENDATION OF SUBMITTING OFFICE/AGENCY

a The attached material ha DepartmentOffice/Agency approval for public realease (qualifications if any. are indicated in Remarks Section) and clearance
for open publication is rcommned under provisions of DoDD 5230 9 1 am authorized to make this recommendation for release on behalf of:

Director. AJPO /
b. Clearanceis rqus by 880Q9 . (ymmDo).

c. NAME (La4 sF A4T MT "T45

f.. OFFICE .: g. AGENCY h DA (YYMMDO)

/..N /OO

D 1910,,- 1.PREVIOUS EDITION IS OBSOL'ETE., ..

_ .i I i • • m i ll I , I. iIl III l- i l ii

DIC ?AB
tknmounod 0
Justlfloatl

Distlibution/

Avilability Codes

wg ltspecial. ls r ol

ADA LANGUAGE COMMENTARIES

VOLUME II

26 MAY 1988 - 23 JUNE 1988

P9CLEqRED

O Pu LICA TION

SEP 18 148 0 8
D~pmM,, oc fAZO~, l ,

8 8 1 0 1 8 1 40 884440

INDEX

Ada-Commentary Page

ai-00012-bi.wj... ... 1
ai-00099-ra.wj... 5
ai-00113-bi.wj.. 8
ai-00146-ra.wj.. 12
ai-00158-bi.wj.. 15
ai-OO17O-bi.wj.. 17
ai-00179-ra.wj................................... 20
ai-00192-ra.wj.. 23
ai-OO195-ra.w....................................... 25
ai-oo19s-bi.wJ.................................. 27
ai-oo2o1-ra.wj.. 31
ai-00209-ra.wj.. 34
ai-oo217-co.wj.. 36
ai-00231-ra.wj..................................... 38
ai-00235-ra.wj.. 41
ai-00245-ra.wj........................ 43
ai-00258-bi.wj.. 46
ai-00263-bi.wj.. 49
ai-00295-bi.wj.. 52
ai-00305-bi.wj.............. 5
ai-00306-bi.wj.. 58
ai-00324-bi.wj.. 63
ai-00336-ra.wj................. 66
ai-00356-bi.Wj .. 68
ai-00366-ra.wj....................................... 71
ai-00367-bi.wj .. 73
ai-00374-bi.wj.. 76
ai-00375-ra.wj.................. 78
ai-00388-ra.wj.. o............. 80
ai-0O407-bi.wj.. 83
ai-00412-bi.wj.. 88
ai-00422-bi.Wj.......................... 91
ai-00430-bi.wj... 95
ai-00431-ra.wj ... 97
ai-0O441-ra.wj..100o
aja00455-bj.wj.. 102
ai-00464-bi.Wj.............................. 104
ai-00466-bi.wj... .. 106
ai-00467-cr.wj.. 108
ai-oo475-bi.wj.. ... ill
ai-00493-ra.wj.. 113
ai-00502-cr.wj........................ 115
ai-oo5o3-cr.wJ...................117
ai-00508-bi.wj........................... 119
ai-00511-cr.wj......o.................... o..........................121
ai-00516-bi.wj.. 123

i

Ada Commentary ai-00012-bi.wj downloaded on Tue Aug 9 17:00:45 EDT 1988

Declaration of homographs by derivation and instantiation AI-00012/06 1
88-05-23 BI wJ

!standard 08.03 (17) 88-05-23 AI-00012/06
!standard 12.03 (22)
!class binding interpretation 86-10-14
I!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-02-17 (reviewed)
!status panel/committee-approved (9-0-1) 86-11-13 (pending editorial review)
!status work-item 83-10-10
!references AI-00398, 83-00139, 83-00815
!topic Declaration of homographs by derivation and instantiation

!summary 86-12-15

Derived subprograms can be homographs, and so can subprograms declared in an
instance.

!question 86-12-15

8.3(17) says:

Two declarations that occur immediately within the same
declarative region must not be homographs, unless either or both
of the following requirements are met: (a) exactly one of them is
the implicit declaration of a predefined operation; (b) exactly
one of them is the implicit declaration of a derived subprogram.
In such cases, a predefined operation is always hidden by the
other homograph; a derived subprogram hides a predefined
operation, but is hidden by any other homograph. Where hidden in
this manner, an implicit declaration is hidden within the entire
scope of the other declaration (regardless of which declaration
occurs first); the implicit declaration is visible neither by
selection nor directly.

Consider the following example (Example 1):

package P1 is
type T is private;
type S is range 1..10;
procedure Q (X : S; Y : S); -- Q1
procedure Q (X : T; Y : S); -- Q2
procedure Q (X : T; Y : T); -- Q3

private
type T is new S; -- derives Qi and Q2 as homographs,

-- but the derived Ql and Q2 are hidden
-- by Q3's explicit declaration

end P1;

The full declaration of T declares two derived subprograms, Ql and Q2. Since
these subprograms are homographs, condition (b) of 8.3(17) is violated, so
the derived type declaration is illegal. Is this correct?

Declaration of homographs by derivation and instantiation AI-00012/06 2
88-05-23 BI WJ

Now consider a generic unit and an instantiation (Example 2):

generic
type TI is private;
type T2 is private;

package GP2 is
procedure PROC (X : Ti);
procedure PROC (Y : T2);

end GP2;

package P2 is new GP2 (INTEGER, INTEGER);

Is this instantiation legal even though the two declarations of PROC within
P2 are homographs and it is not the case that exactly one of these
declarations is the implicit declaration of a predefined operation or derived
subprogram? The note in 12.3(22) asserts that the instantiation is legal,
even though P2 appears to violate 8.3(17).

Now consider a similar example (Example 3):

generic
type Ti is private;
type T2 is private;

package GP3 is
type T is range 1..10;
procedure PROC (X : Ti; Y : T);
procedure PROC (Z : T2; Y : T);

end GP3;

package P3 is new GP3 (INTEGER, INTEGER);

type NT is new P3.T; -- legal?

Assuming that GP3's instantiation is legal, the derived type declaration for
NT implicitly derives two homographs for PROC. Since the implicit
declaration of these homographs appears to violate 8.3(17), is this
declaration illegal?

Now consider a similar example (Example 4):

generic
type T4 is private;

package GP4 is
type NT4 is new T4;

end GP4;

package P4 is new GP4(P3.T);

According to AI-00398, the instance P4 contains implicit declarations of
subprograms that are derivable for type P3.T. Since there are two such
subprograms and they are homographs, the instance contains declarations of
two implicitly declared homographs, seemingly in contradiction with 8.3(17).
Is P4 a legal instance? (Note that if it is legal, one of the homographs can
be called by writing P4.PROC(X -> ...).)

Declaration of homographs by derivation and instantiation AI-00012/06 3
88-05-23 BI WJ

Example 4 may suggest that 8.3(17) is not intended to apply within generic
instances, but consider this example (Example 5):

generic
type T5 is private;

package GP5 is
type ARR is array (NATURAL range <>) of T5;
function "and" (L, R : ARR) return ARR;

end GP5;

package P5 is new GP5 (BOOLEAN);

In accordance with AI-00398, P5 contains an implicit declaration of the
predefined "and" operator for the type P5.ARR. Is this declaration hidden in
accordance with 8.3(17) by the user-provided declaration of P5."and"?

In short, when does the rule given in 8.3(17) actually apply?

!recommendation 87-01-18

Two declarations that occur immediately within the same declarative region
must not be homographs, unless one or more of the following requirements are
met: a) exactly one of them is the implicit declaration of a predefined
operation; b) one (or both) of them is the implicit declaration of a derived
subprogram; or c) the declarations occur within an instance of a generic
unit. In such cases, a predefined operation is always hidden by the other
homographs; a derived subprogram hides a predefined operation, but is hidden
by any other homographs except a derived subprogram. Where hidden in this
manner, an implicit declaration (of a predefined operation or derived
subprogram) is hidden within the entire scope of the other declaration
(regardless of which declaration occurs first); the implicit declaration is
visible neither by selection nor directly.

!discussion 87-12-07

The note in 12.3(22) shows that it was intended to allow homographs within a
generic instance, i.e., 8.3(17)'s restrictions on homographs were not
intended to apply within such declarative regions. Example 4 (in conjunction
with AI-00398) shows that derived subprograms in an instance can be
homographs. This example shows it is reasonable to allow the implicit
declaration of derived subprogram homographs, at least within generic
instances. If derived subprogram homographs are to be allowed within generic
instances, however, it seems reasonable to allow them for any derived type
declaration as well; forbidding such homographs outside of generic instances
would only create work for implementers, and would have no benefit to
programmers. The recommendation reflects these conclusions by allowing
derived subprograms to be homographs and by explicitly allowing homographs to
be created within generic instances.

The recommendation makes all the examples legal. In addition, for Example 5,
the predefined operator is hidden.

Ada Commentary ai-00099-ra.wj downloaded on Tue Aug 9 16:58:22 EDT 1988

,I

'SMALL can be specified for a derived fixed point type AI-00099/12 1
88-05-23 ra WJ

!standard 13.02 (12) 88-05-23 AI-00099/12
!class ramification 85-01-31
I!status approved by WG9/AJPO 88-02-05
I!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-70
!status panel/committee-approved 87-03-16 (reviewed)
!status panel/committee-approved (5-0-1) 86-11-14 (pending editorial review)
!status work-item 86-05-09
!status returned to committee by WG9 86-05-09
!status committee-approved (7-0-0) 86-02-21
!status work-item 85-01-31
!status received 84-01-10
!references AI-00138, AI-00341, 83-00237, 83-00651, 83-00705, 83-00738,

83-00757, 83-00783, 83-00794
!topic 'SMALL can be specified for a derived fixed point type

!summary 87-03-13

A representation clause specifying SMALL for a derived fixed point type is
allowed if the resulting model numbers are (representable) values of the
parent type and the value specified for SMALL is not greater than the delta
of the derived type.

!question 85-01-31

13.2(12) imposes no restriction on the application of 'SMALL to a derived
fixed point type. For example, could 0.1, 0.5, 1.0, 2.0, and 4.0 all be
specified as values of DF1'SMALL in the example below?

type Fl is delta 1.0 range -15.0 .. 15.0; -- F1'SMALL = 1.0
type DF1 is new Fl delta 4.0;
for DFI'SMALL use ...

!response 87-12-07

3.4(4) says the set of values of a derived type is a copy of the set of
values for the parent type. 3.5.6(3) says an implementation of a real type
must include the model numbers of the type and represent them exactly. The
effect of specifying SMALL for a fixed point type is to help establish the
model numbers of the type. Since the model numbers must be representable
values of the type, and since the values of a derived type are determined by
the parent type, no representation clause is allowed for a derived fixed
point type unless the model numbers determined by the clause are
representable values. (In addition, 13.2(12) requires that the specified
value of SMALL not exceed the delta of the type.)

With respect to the example, DF1'DELTA is 4.0, so a value specified for
DF1'SMALL must not exceed 4.0. In addition, the values of DF1 include at
least the model numbers of parent subtype Fl. These model numbers are -15.0,
-14.0, ..., 14.0, 15.0. If DF1'SMALL is specified to be 4.0, the mantissa
for DF1 must be 2, so the model numbers for DF1 will be -12.0, -8.0, -4.0,
0.0, 4.0, 8.0, and 12.0. Since these are all values of type Fl, such a
specification of SMALL is allowed. If the specified value of SMALL is 3.0,

'SMALL can be specified for a derived fixed point type AI-00099/12 2
88-05-23 ra WJ

the mantissa for DF1 must be 3 (to ensure the bounds of the subtype are
within SMALL of model numbers), so the model numbers for DFI will be -21.0,
-18.0, ..., 18.0, 21.0. If the chosen base type for Fl includes these values
(see AI-00341), then the representation clause is allowed. On the other
hand, if the base type for Fl has only four mantissa bits, then the range of
representable values is just -15.0 .. 15.0, and the representation clause for
SMALL would not be allowed.

If the representation clause for DF1'SMALL specifies 0.1, then the mantissa
of DF1 must be 8 and the model numbers for DF1 will be -25.5, -25.4,

25.4, 25.5. If these model numbers are not represented exactly in the value
set for Fl's base type, such a representation clause must be rejected.

These arguments are not affected by the presence of an explicit (or implicit)
representation clause for the parent type (see AI-00138).

Ada Commentary ai-00113-bi.wj downloaded on Fri Aug 12 09:50:04 EDT 1988

A subunit's with clause can name its ancestor library unit AI-00113/12 1
88-05-23 BI WJ

!standard 10.05 (02) 88-05-23 AI-00113/12
!class binding interpretation 83-11-07
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!statn.; approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-01-19 (reviewed)
!status panel/committee-approved (6-0-0) 86-11-14 (pending editorial review)
!status work-item 86-05-20
!status referred back to committee by WG9 86-05-09
!status committee-approved (9-1-2) 86-02-20
!status committee-approved (7-2-0) 85-11-20 (pending letter ballot)
!status failed letter ballot (6-4-2) 85-11
!status committee-approved (9-1-0) 85-09-04 (subject to letter ballot)
!status work-item 85-04-08
!status received 83-11-07
!references AI-00418, 83-00165, 83-00683, 83-00685, 83-00695, 83-00923
!topic A subunit's with clause can name its ancestor library unit

!summary 85-04-08

A with clause for a subunit can name the subunit's ancestor library unit.

!question 85-04-08

10.5(2) says, "A library unit mentioned by the context clause of a subunit
must be elaborated before the body of the ancestor library unit of the
subunit." Suppose the context clause names the ancestor library unit, e.g.,

procedure M is
procedure SUBUNIT is separate;

begin ... end M;

with M; -- ancestor library unit is named
separate (M)
procedure SUBUNIT is
begin ... end SUBUNIT;

Since M is both a library unit and the ancestor library unit for SUBUNIT, the
10.5(2) wording requires that M be elaborated before itself. Does this mean
the context clause in this example is illegal?

!recommendation 85-04-08

A library unit mentioned by the context clause of a subunit must be
elaborated no later than the body of the subunit's ancestor library unit.

!discussion 86-09-28

The example given in the question shows that the Standard requires an
elaboration that cannot be performed, namely, M must be elaborated before M
is elaborated. This does not mean the context clause in the example is
illegal; it just means an unimplementable interpretation is specified by the
Standard. This difficulty must be resolved, either by stating that such

A subunit's with clause can name its ancestor library unit AI-00113/12 2
88-05-23 BI WJ

examples are illegal or by giving the example a satisfactory meaning (by
reinterpreting 10.5(2)).

Before considering the example given in the question, let's consider a very
similar example which is definitely legal. This example is just like the one
in the question except the library unit is specified with a declaration
instead of a body, so the body containing the body stub is a secondary unit,
not a library unit:

procedure P1; -- library unit P1

procedure P1 is -- secondary unit
procedure P SEP is separate;

begin ... end P1;

with P1;
separate (P1)
procedure PSEP is
begin ... end PSEP;

The legality of this example depends, in part, on 8.6(2), which says:

The package STANDARD forms a declarative region which encloses
every library unit and consequently the main program; the
declaration of every library unit is assumed to occur immediately
within this package. The implicit declarations of library units
are assumed to be ordered in such a way that the scope of a given
library unit includes any compilation unit that mentions the
given library unit in a with clause.

The with clause for the subunit requires the presence of a library unit named
P1 whose scope (in STANDARD) includes the unit being compiled, P SEP. Since
such a library unit exists and can be placed prior to the unit being
compiled, the requirements of 8.6(2) are satisfied. In addition, 10.1.1(5)
says library unit P1 is directly visible within P SEP, except where hidden.
(Of course, library unit P1 would have been visible in exactly this way even
if the with clause had been omitted, since PSEP is a subunit of P1; 10.2(6)
says:

Visibility within the proper body of a subunit is the visibility
that would be obtained at the place of the corresponding body
stub (within the parent unit) if the with clauses and use clauses
of the subunit were appended to the context clause of the parent
unit.

This just gives the rule for determining the visibility of identifiers within
P SEP. In particular, it does not change the visibility that PSEP already
has of library unit P1 and Pl's declarations.)

Finally, 10.5(2) says:

A library unit mentioned by the context clause of a subunit must
be elaborated before the body of the ancestor library unit of the
subunit.

A subunit's with clause can name its ancestor library unit AI-00113/12 3
88-05-23 BI WJ

In the present case, this means the declaration of library unit P1 must be
elaborated before the subunit is elaborated, and there is no difficulty in
doing so.

In short, for the above example, the redundant with clause causes no
problems. Moreover, if P1 were a package or generic unit, the same reasoning
would hold.

Now consider the example given in the question, which is like P1 except the
parent unit for PSEP is itself a library unit:

procedure M is -- library unit
procedure SUBUNIT is separate;

begin ... end M;

with M;
separate (M)
procedure SUBUNIT is
begin ... end SUBUNIT;

How does the analysis for this example differ from that for PI? The with
clause for SUBUNIT still requires the presence of a library unit named M, and
such a library unit exists -- it is the body named M. This body can be placed
prior to the subunit (to ensure the scope of the library unit includes
SUBUNIT), so this requirement of 8.6(2) can be satisfied. The visibility of
library unit M is not changed by the presence (or absence) of the with
clause, just as before. Of course, if the with clause naming M were
literally appended to the (null) context clause of M, the compilation of M
would not be successful because M is a library unit (see AI-00418). But this
fact is irrelevant because M is not, in fact, being compiled. The appending
,f with clauses is just a way of explaining to what extent the with clause
augments the visibility the subunit has of library unit M. In this case,
appending the with clause gives no additional visibility of library unit M.

Finally, 10.5(2) requires that the library unit mentioned in the context
clause (i.e., library unit M) be elaborated before the body of SUBUNIT's
ancestor library unit (which in this case, is the body for M, and in this
case, the body of the ancestor library unit is also a library unit.) This
elaboration rule cannot be obeyed, since a unit cannot be elaborated before
it is elaborated.

There are two ways to resolve this problem: consider such examples illegal,
or consider them legal and provide a semantic interpretation by saying the
library unit mentioned in the context clause of a subunit must be elaborated
"no later than" the body of the subunit's ancestor library unit body. This
interpretation would mean library unit M must be elaborated no later than
when it is elaborated (an easy condition to satisfy!).

It does not seem reasonable to consider the M example illegal when the very
similar-seeming P1 example is clearly legal and since similar examples using
packages and generic units are legal (see AI-00418). Since the proposed
semantic interpretation leads to no contradictions, since no other
difficulties are introduced by allowing such redundant with clauses, and
since all validated compilers allow such examples, it is reasonable to allow

A subunit's with clause can name its ancestor library unit AI-00113/12 4
88-05-23 BI WJ

the with clause of a subunit to name its ancestor library unit and to require
that the ancestor library unit be elaborated no later than the body of the
ancestor library unit.

Ada Commentary ai-00146-ra.wj downloaded on Fri Aug 12 09:50:02 EDT 1988

Model numbers for a fixed point subtype with length clause AI-00146/10 1
88-05-23 ra WJ

!standard 03.05.09 (16) 88-05-23 AI-00146/10
!standard 03.05.09 (14)
!class ramification 86-11-14
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-03-16 (reviewed)
!status panel/committee-approved (6-0-0) 86-11-14 (pending editorial review)
!status work-item 86-05-20
!status referred back to committee by WG9 86-05-09
!status committee-approved (8-1-0) 85-11-20
!status work-item 85-04-08
!status received 84-01-10
!references 83-00238, 83-00738, 83-00805
!topic Model numbers for a fixed point subtype with length clause

!summary 85-04-08

If a length clause specifying SMALL has been given for a fixed point type, T,
then the value of SMALL for any subtype of T is given by T'SMALL.

!question 86-12-17

3.5.9(16), which is a note, says:

If S is a subtype of a fixed point type or subtype T, then the
set of model numbers of S is a subset of those of T. If a length
clause has been given for T, then both S and T have the same
value for SMALL.

3.5.9(14) defines how model numbers are defined for a fixed point subtype:

[The elaboration of a fixed point subtype indication] creates a
fixed point subtype whose model numbers are defined by the
corresponding fixed point constraint and also by the length
clause specifying small, if there is one.

Now consider an example:

type F is delta 0.1 range -15.0 .. 15.0;
for F'SMALL use 0.1;
subtype FS is F delta 0.8;

There is no length clause specified for subtype FS and none is allowed. What

is the value of FS'SMALL?

!response 87-03-13

Since a length clause cannot be given for a subtype declared by a subtype
declaration (see 13.2(3)), when 3.5.9(14) mentions "the" length clause
specifying SMALL, it can only be referring to a length clause given for a
declared type. 3.5.9(5) then defines how such a length clause determines the
model numbers and the value of SMALL:

Model numbers for a fixed point subtype with length clause AI-00146/10 2
88-05-23 ra WJ

For the model numbers defined by a fixed point constraint, the
number SMALL is chosen as the largest power of two that is not
greater than the delta of the fixed accuracy definition.
Alternatively, it is possible to specify the value of SMALL by a
length clause, in which case model numbers are multiples of the
specified value.

Consequently, if a length clause is given for the declared type, F, the
clause defines the value of SMALL for all subtypes of F, in accordance with
3.5.9(5).

Although the value of SMALL is fixed by a length clause, the length of the
mantissa, and hence, the set of model numbers, can change for a subtype:

subtype FS3 is F delta 0.8 range -7.0 .. 7.0;

F'MANTISSA - FS'MANTISSA, but since FS3 has half the range of F, FS3'MANTISSA
- F'MANTISSA - 1.

Ada Commentary ai-00158-bi.wj downloaded on Fri Aug 12 09:49:41 EDT 1988

ILm nmmim ip

The main program is elaborated before it is called AI-00158/05 1
88-05-23 BI WJ

!standard 10.05 (01) 88-05-23 AI-00158/05
!class binding interpretation 87-01-15
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 87-01-15
!status received 84-01-10
!references AI-00222, 83-00226
!topic The main program is elaborated before it is called

!summary 87-01-15

The main program is elaborated before it is called.

!question 87-01-15

Paragraph 10.5(1) lists the library units elaborated before a main program is
called; this set does not include the body of the main program itself.
Paragraph 10.1(8) states, "Each main program acts as if called by some
environment task...." Thus a main program is called before its body is
elaborated. kccording to section 3.9, this raises PROGRAMERROR. Is this
the intent?

!recommendation 87-01-15

The main program is elaborated before it is called by the environment task.

aiscussion 87-01-17

It was clearly not the intent for a call of the main program to raise
PROGRAMERROR. 10.5 should have mentioned that the body of the main program
is elaborated before it is called.

Ada Commentary ai-00170-bi.wj downloaded on Tue Aug 9
14:27:04 EDT 1988

Renaming a slice AI-00170/07 1
88-06-13 BI WJ

!standard 08.05 (05) 88-06-13 AI-00170/07
!class binding interpretation 84-01-17
!status approved by WG9/AJPO 88-02-05 (corrected in accordance with AI-00502)
!status approved by WG9/AJPO 86-07-22
!status approved by Director, AJPO 86-07-22
!status approved by WG9/Ada Board 86-07-22
!status approved by Ada Board 86-07-22
!status approved by WG9 86-05-09
!status committee-approved (8-0-0) 86-02-20
!status work-item 86-01-17
!status received 84-01-17
!references 83-00257, 83-00859
!topic Renaming a slice

!summary 86-01-17

A slice must not be renamed if renaming is prohibited for any of its
components.

!question 88-06-13

4.1.2(1) says that:

A slice denotes a one-dimensional array formed by a sequence of
consecutive components of a one-dimensional array.

and 8.5(5) says that:

The following restrictions apply to the renaming of a
subcomponent that depends on discriminants of a variable ...

A strict reading of 4.1.2 indicates that a slice is not an example of a
component -- it is, instead, a one-dimensional array, which is apparently an
entirely separate concept. If so, then apparently the restrictions in 8.5(5)
about renaming a subcomponent that depends on a discriminant do not apply to
slices. For example:

type SINT is NATURAL range 0..100;
type VREC (N : SINT :- 0) is

record
S : STRING (1..N);

end record;

OBJ : VREC :- (3, "ABC");

OBJI : CHARACTER renames OBJ.S(l); -- illegal by 8.5(5)
OBJ2 : STRING renames OBJ.S(1..2); -- illegal? (yes)

OBJ.S(I..2) is a slice and thus not clearly a "component", so 8.5(5) does not
clearly apply. Do the restrictions of 8.5(5) apply to slices as well as
"just subcomponents"?

Renaming a slice AI-00170/07 2
88-06-13 BI WJ

!recommendation 86-01-17

A slice must not be renamed if renaming is prohibited for any of its
components.

1discussion 86-03-05

The reason for the restrictions in 8.5(5) is to prevent the newly declared
name from denoting an object whose existence may subsequently cease while
execution is still within the scope of the name. In the example, a
subsequent assignment

OBJ :- (0, "");

would cause OBJI to denote a no-longer existing object, namely, OBJ.S(l).
Similarly, OBJ2 would now denote a non-existent array object, namely,

OBJ.S(l..2). This undesirable situation was not intended.

Ada Commrentary ai-00179-ra.wj downloaded on Tue Aug 9 14:27:02 EDT 1988

The definition of the attribute FORE AI-00179/08 1
88-06-13 ra WJ

!standard 03.05.10 (08) 88-06-13 AI-00179/08
!class ramification 85-09-05
!status approved by WG9/AJPO 88-02-05 (corrected in accordance with AI-00467)
!status approved by WG9/AJPO 86-07-22
!status approved by Director, AJPO 86-07-22
!status approved by WG9/Ada Board 86-07-22
!status approved by Ada Board 86-Ct-12
!status approved by WG9 85-11-18
!status committee-approved (10-0-0) 85-09-05
!status work-item 84-06-11
!status received 84-01-25
!references 83-00265, 83-00654, 83-00803
!topic The definition of the attribute FORE

!summary 85-09-18

The attribute 'FORE is defined in terms of the decimal representation of
model numbers.

!question 85-09-18

For a fixed point type definition such as

type F is delta 0.1 range 0.0 .. 9.96;
for F'SMALL use 0.01;

is the value of F'FORE 2 or 3? Note that when outputting F'LAST with an AFT
of 1, the string " 10.0" will be produced, and this string requires a FORE of
3.

!response 88-06-13

The Standard gives the following definition for 'FORE:

Yields the minimum number of characters needed for the integer
part of the decimal representation of any value of the subtype T,
assuming that the representation does not include an exponent,
but includes a one-character prefix that is either a minus sign
or a space. ...

For a fixed point subtype declared as follows:

type F is delta 0.1 range 0.0 .. 9.96;
for F'SMALL use 0.01;

the value of 'FORE is 2 since the straightforward inierpretation of "decimal
representation of any value of the subtype" means the exact decimal
representation of the model numbers belonging to F. In this case, the value 2
is unsuitable when certain values, e.g., 9.96, are output with an AFT of 1.
It is up to the programmer to take this effect into account when using fixed
point output formats.

The value returned by 'FORE can be implementation dependent. For example:

The definition of the attribute FORE AI-00179/08 2
88-06-13 ra WJ

type G is delta 0.01 range 1.00 .. 10.00;
for G'SMALL use 0.01;
subtype SG is F delta 0.01 range 1.00 .. 9.995;

For the subtype SG, 9.99 and 10.00 are consecutive model numbers (3.5.9(14)).
It is implementation dependent whether the upper bound of SG is represented
as the model number 9.99 or the model number 10.0. Depending on the
implementation's choice, the value retui.ned by SG'FORE will be either 2 or 3.
In addition, note that the bounds of SG need not be given by static
expressions. If the upper bound is non-static and has a value lying in the
model interval 9.99 to 10.00, SG'FORE's value will be implementation
dependent (and must be computed at run-time). The fact that 'FORE may return
implementation dependent values should be taken into consideration by
programmers.

Ada Commentary ai-00192-ra.wj downloaded on Fri Aug 12 09:49:39 EDT 1988

Allowed names of library units AI-00192/05 1
88-05-23 ra WJ

!standard 08.06 (02) 88-05-23 AI-00192/05
!class ramification 84-03-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board (21-0-0) 87-02-19
!status panel/committee-approved 86-10-15 (reviewed)
!status panel/committee-approved (5-0-0) 86-09-11 (pending editorial review)
!status work-item 86-08-07
!status received 84-03-13
!references 83-00300
!topic Allowed names of library units

!summary 86-08-12

The name of a library unit cannot be a homograph of a name that is already
declared in package STANDARD.

!question 86-08-07

8.6(2) states:

The package STANDARD forms a declarative region which encloses
every library unit and consequently the main program; the
declaration of every library unit is assumed to occur immediately
within this package.

Does this imply that a library unit may not have a name such as STRING which

is already declared in STANDARD?

!response 86-09-15

Since the name of a library unit is implicitly declared in STANDARD, the name
cannot be a homograph (8.3(15)) of a name that is already declared in package
STANDARD. In particular, a library unit cannot have the name BOOLEAN,
INTEGER, FLOAT, CHARACTER, ASCII, NATURAL, POSITIVE, STRING, DURATION,
CONSTRAINTERROR, NUMERIC ERROR, PROGRAM ERROR, STORAGEERROR, or TASKING
ERROR. In addition, if an implementation has provided predefined numeric
types such as LONGINTEGER, SHORTINTEGER, etc., a library unit cannot have
any of these names. Similarly, no library unit package or generic unit can
have the name TRUE or FALSE, but a library unit subprogram can have the name
TRUE or FALSE as long as it is not a homograph of the enumeration literals
TRUE or FALSE (i.e., as long as it is not a parameterless function with
return type STANDARD.BOOLEAN).

Ada Cornnentary ai-00195-ra.wj downloaded on Fri Aug 12 09:49:07 EDT 1988

The intended use of CLOCK AI-00195/09 1
88-05-23 ra WJ

!standard 09.06 (05) 88-05-23 AI-00195/09
!class ramification 84-03-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05

I !status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved (9-1-3) 87-02-17 (by ballot)
!status panel/committee-approved (5-0-0) 86-11-14 (pending letter ballot)
!status work-item 86-08-07
!status received 84-03-13
!references AI-00325, AI-00201, 83-00296, 83-00864
!topic The intended use of CLOCK

!summary 87-08-20

CLOCK returns a value that reflects the time of day in the external
environment.

!question 86-12-28

What is the intended function of CLOCK? In particular, must successive calls
to CLOCK produce monotonically nondecreasing values?

!response 87-06-11

The Standard only requires that CLOCK return values reflecting the behavior
of a hardware clock. Successive calls to CLOCK have properties that depend
on the execution environment. For example, if the hardware clock is reset by
the system operator (to compensate for a change to Daylight Saving Time,
power failures, or inaccurate time-keeping), successive calls to CLOCK can
fail to produce monotonically nondecreasing values. Similarly, successive
calls to CLOCK could exhibit odd behavior if the environment consists of a
set of processors each of which provides its own hardware clock. In any
case, failure to produce monotonically nondecreasing values would require
justification in terms of AI-00325.

Ada Commentary ai-00198-bi.wj downloaded on Fri Aug 12 09:49:06 EDT 1988

Termination of unactivated tasks AI-00198/09 1
88-05-23 BI WJ

!standard 09.10 (05) 88-05-23 AI-00198/09
!standard 09.03 (04)
!standard 09.03 (08)
!class binding interpretation 84-03-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 86-01-21
!status received 84-03-13
!references AI-00149, 83-00290, 83-00438, 83-00766, 83-00863
!topic Termination of unactivated tasks

!summary 87-03-13

If a task is abnormally completed, then any task it has created but not yet
activated becomes terminated and is never activated.

If PROGRAM ERROR is raised before attempting to activate one or more tasks
because the body of at least one of these tasks has not yet been elaborated
(see AI-00149), all the unactivated tasks become terminated.

!question 87-01-20

A task can be aborted while attempting to activate some other tasks. The
intention is that unactivated tasks in such a case become terminated, but the
existing rules do not seem to cover all the cases that can arise. In
particular, suppose the aborted task is executing an allocator and the
allocated tasks do not depend on the aborted task:

procedure P is

task ACTIVATOR;
task type T;
function F return INTEGER;

type R is
record

Cl : T;
C2 : NATURAL :- F; -- aborts self before Cl is activatec

end record;
type A is access R;

function F return INTEGER is
begin

abort ACTIVATOR; -- abort self (F called within ACTIVATOR)
return 3;

end F;

Termination of unactivated tasks AI-00198/09 2
88-05-23 BI WJ

task body T is
begin

null;
end T;

task body ACTIVATOR is
X : A :- new R; -- X.C1 depends on P, not on ACTIVATOR

begin
null;

end ACTIVATOR;

begin -- activate ACTIVATOR here
null;

end P;

By 4.8(6), the allocator first creates the object, X.all, and then
initializes it (3.2.1(15)). The attempt to initialize X.C2 aborts task
ACTIVATOR and causes it to become abnormal. But task X.Cl depends on P, not
on ACTIVATOR, and so by 9.10(4), task X.Cl doesn't become abnormal. But by
9.3(6), X.Cl does not begin activation until after X.all is initialized.
Thus, X.Cl is created, but is never activated, nor is it ever abnormal,
completed, or terminated. Is this correct?

Finally, suppose an attempt is made to activate a task before its body has
been elaborated:

declare
task type PROGERR;

package P is ... end P;

package body P is
X : PROGERR;

begin
-- the attempt to activate X raises PROGRAM-ERROR
null;

exception
when others ->

-- X'TERMINATED could be false?
end P;

task body PROGERR is ... end PROGERR;
begin ... end;

The attempt to activate X does not take place during the elaboration of a
declarative part; it occurs prior to the execution of the sequence of
statements, so 9.3(4) does not apply. Since X is never activated, is it the
intent that X be considered terminated?

!recommendation 87-03-13

If a task is abnormally completed, then any task it has created but not yet
activated becomes terminated and is never activated.

Termination of unactivated tasks AI-00198/09 3
88-05-23 BI WJ

If PROGRAM ERROR is raised before attempting to activate one or more tasks
because the body of at least one of these tasks has not yet been elaborated,
all the unactivated tasks become terminated.

!discussion 87-01-20

9.3(4) says:

Should an exception be raised by the activation of (a task object
declared in a declarative part or package specification, either
directly or as a subcomponent of an object], that task becomes a
completed task (see 9.4); other tasks are not directly affected.

9.3(8) says:

Should an exception be raised by the initialization of the object
created by an allocator (hence before the start of any
activation), any task designated by a subcomponent of this object
becomes terminated and is therefore never activated.

With respect to the first example, aborting a task does not raise an
exception, so task X.Cl is indeed created and never activated nor terminated.
However, 9.3(4, 8) show the intent in this case is that X.Cl be considered
terminated.

Similarly, 9.3(4) and 9.3(8) do not cover the case where PROGRAM ERROR is
raised prior to the process of attempting to activate one or more tasks (see
AI-00149), but the intent is that if PROGRAM ERROR is raised for this reason,
all of the unactivated tasks are terminated.

Ada Commentary ai-00201-ra.wj downloaded on Thu Aug 11 16:50:53 EDT 1988

The relation between TICK, CLOCK, and the delay statement AI-00201/07 1
88-05-23 ra WJ

!standard 13.07.01 (07) 88-05-23 AI-00201/07
!standard 09.06 (05)
!standard 09.06 (04)
!standard 09.06 (01)
!class ramification 84-03-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 86-07-30
!status received 84-03-13
!references AI-00195, AI-00325, AI-00366, 83-00293, 83-00321, 83-00774,

83-00864
!topic The relation between TICK, CLOCK, and the delay statement

!sunmary 86-12-28

The value returned by successive calls to the CLOCK function can be expected
to change at the frequency indicated by SYSTEM.TICK.

There is no required relation between SYSTEM.TICK and DURATION'SMALL.

Delay statements need not be executed with an accuracy that is related to
SYSTEM.TICK or DURATION'SMALL; in particular, delay statements can be
executed more accurately than SYSTEM.TICK implies. Execution with less
accuracy than SYSTEM.TICK requires justification in terms of AI-00325.

!question 86-12-28

Is it the intention that SYSTEM.TICK be a quantification of the accuracy of
CALENDAR.CLOCK? If not, what is intended?

In 13.7.1(7), what does "basic clock period" mean? (This is also called
"basic clock cycle" at 9.6(4).)

Is there any required relation between SYSTEM.TICK and DURATION'SMALL? In
particular, can SYSTEM.TICK be 1.0 second when DURATION'SMALL is 20 ms?

Is a delay statement executed with an accuracy that is related to the value
of SYSTEM.TICK or DURATION'SMALL?

!response 87-08-20

The CLOCK function returns values associated with a hardware clock (see
AI-00195). The "basic clock period" mentioned in the description of
SYSTEM.TICK refers to the frequency with which this clock is updated. For
example, suppose the hardware clock is updated twice at 8 millisecond
intervals and then once after a 9 millisecond interval. The average update
rate is 8 1/3 milliseconds (1/120 second). SYSTEM.TICK should be 1.0/120.0.

There is no required relationship between the value of SYSTEM.TICK and the
value of DURATION'SMALL (as is stated in 9.6(4), since the "basic clock

The relation between TICK, CLOCK, and the delay statement AI-00201/07 2
88-05-23 ra WJ

cycle" (mentioned in 9.6(4)) and the "basic clock period" (mentioned in
13.7.1(7)) are the same).

The accuracy of the delay imposed by a delay statement is not related
directly to the value of SYSTEM.TICK nor to the value of DURATION'SMALL since
the value of SYSTEM.TICK only reflects the frequency with which successive
calls to CLOCK can be expected to change, and the value of DURATION'SMALL
only reflects the accuracy with which values of type DURATION can be
represented. Of course, since the clock used for the function CLOCK can also
be the clock used to schedule delay statements, it can be expected that in a
reasonable implementation, delay statements will be executed with an accuracy
that is no worse than SYSTEM.TICK. An accuracy that is significantly worse
would require justification in terms of AI-00325.

Ada Commentary ai-00209-ra.wj downloaded on Thu Aug 11 16:50:51 EDT 1988

r . ,, , = m = i = I l m II f iI I I

Exact evaluation of static universal real expressions A!-00209/06 1
88-05-23 ra WJ

!standard 04.10 (04) 88-05-23 AI-00209/06
!class ramification 84-03-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (8-0-0) 87-02-18 (pending editorial review)
!status work-item 87-01-15
!status received 84-03-13
!references AI-00325, 83-00284
!topic Exact evaluation of static universal real expressions

!summary 87-06-11

An implementation can refuse to evaluate a static universal real expression
only if there are insufficient resources to evaluate the expression exactly,
e.g., if there is insufficient memory available. Inexact results must not be
delivered.

!question 84-03-13

Consider the following static expressions:

(a) (1.0/3.0) * 3.0 = 1.0
(b) 1.OE-1000 + 1.0
(c) (1.OE1000 + 1.0) / 1.OE1000 = 1.0

A typical floating point evaluation of expression (a) would yield the value
FALSE, but 4.10(4) requires that the evaluation of static universal real
exressicns be exact. Hence, in order to evaluate universal real expressions
exactly, a compiler must include a rational arithmetic package or some even
more complicated expression representation and manipulation package. Such a
rational arithmetic package would consume more than 3000 bits to represent
the exact value of expression (b). Any limitation on the precision of the
arithmetic would result in expression (c) evaluating to TRUE, which would be
incorrect.

Can an implementer employ a limited precision evaluation strategy for static
universal real expressions, rejecting programs that cannot be evaluated
exactly using this strategy?

!response 87-03-24

The requirement to evaluate static universal real expressions exactly was
given careful consideration during Ada's design. It was decided that the
advantage of requiring such evaluations (in terms of increased program
clarity) is worth the implementation burden. In practice, this means that
implementers must evaluate such expressions using a rational arithmetic
package (see "Universal Arithmetic Packages" by G. Fisher in ACM Ada Letters,
Vol. 3, No. 6, pp. 30-47, May-June, 1984.) Consequently, it would not be
consistent with the design intent and AI-00325 for an implementation to
return FALSE as the value of 1.0/3.0 * 3.0 - 1.0. In general, the only
acceptable reason for refusing to evaluate a static universal real expression
exactly is insufficient memory to hold the required values.

Ada Commentary ai-00217-co.wj downloaded on Thu
Aug 11 16:50:32 EDT 1988

The safe numbers of a floating point subtype AI-00217/05 1
88-05-23 co WJ

!standard 03.05.07 (09) 88-05-23 AI-00217/05
!class confirmation 86-11-14
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-03-16 (reviewed)
!status panel/committee-approved (6-0-0) 86-11-14 (pending editorial review)
!status work-item 86-08-08
!status received 84-03-13
!references AI-00407, AI-00508, 83-00326
!topic The safe numbers of a floating point subtype

!summary 86-12-28

The safe numbers of a floating point subtype are the safe numbers of its base
type.

!question 86-12-28

3.5.7(9) says:

The safe numbers of a (floating point] subtype are those of its
base type.

Shouldn't this say that the safe numbers of a floating point subtype are a
SUBSET of those of its base type?

!response 87-03-13

The statement in 3.5.7(9) is correct because operations on values of a
subtype are defined in terms of operations on safe numbers of the base type.
Therefore, the safe numbers of a subtype should be (and are) the same as the
base type's safe numbers.

Safe numbers are used (in the Standard) to specify the accuracy of real
numeric operations. 4.5.7(8) defines the accuracy of all real numeric
operations in terms of the safe numbers (since the model numbers of a type
are a subset of the safe numbers and the rules for computing with safe
numbers are the same as the rules for computing with model numbers). Since
all numeric operations are declared for types rather than subtypes, these
operations are performed using the safe numbers of the base type, and hence,
in order to define the accuracy of operations on values of a subtype, it was
sufficient (and intended) for the safe numbers of a floating point subtype to
be the same as the safe numbers of its base type.

Ada Commnentary ai-00231-ra.wi downloaded on Thu Aug 11 16:50:30
EDT 1988

Full declarations of incomplete types can have discriminants AI-00231/05 1
88-05-23 ra WJ

!standard 03.08.01 (04) 88-05-23 AI-00231/05
!class ramification 84-03-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-29
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (8-0-1) 87-02-17 (pending editorial review)
!status work-item 87-01-18
!status received 84-03-13
!references 83-00342
!topic Full declarations of incomplete types can have discriminants

!summary 87-01-18

The full declaration of an incomplete type can be a derived type with
unconstrained discriminants when no discriminant part is given in the
incomplete type's declaration.

!question 87-01-18

3.8.1(4) says:

A discriminant part must be given in the full type declaration
[for an incomplete type] if and only if one is given in the
incomplete type declaration;

No further restriction is placed on the nature of the full type declaration,
in contrast to the wording for private types (7.4.1(3)):

If the private type declaration includes a discriminant part, the
full declaration must include a discriminant part that conforms
(see 6.3.1 for the conformance rules) and its type definition
must be a record type definition. Conversely, if the private
type declaration does not include a discriminant part, the type
declared by the full type declaration (the FULL TYPE) must not be
an unconstrained type with discriminants. The type must not be
an unconstrained array type.

In particular, it appears that an incomplete type without a discriminant part
can have a full declaration that is an unconstrained array type or a derived
type with unconstrained discriminants:

type REC (D : INTEGER) is
record

null;
end record;

type T;

type T is new REC; -- legal? (yes)

Was this intended?

Full declarations of incomplete types can have discriminants AI-00231/05 2
88-05-23 ra WJ

!response 87-07-07

As noted in the question, the wording in 3.8.1(4) allows the full declaration
of an incomplete type to be an unconstrained array type or a derived type
that has unconstrained discriminants. This causes no difficulty, because
prior to the end of the incomplete type's full type declaration, it can only
be used as the type mark in the subtype indication of an access type
definition (3.8.1(4)). Such usage is allowed for any unconstrained array
type or type with discriminants, whether or not the discriminants have
defaults; allowing it for incomplete types causes no problem.

Such full declarations would cause problems for private types, however, since
it would be impossible to provide an appropriate constraint outside the
package declaring the type.

. ... -..- - m . m m - -- m m w m

Ada Commentary ai-002 35-rawj downloaded on Thu Aug 11 16:50:20 EDT 1988

,a.'. _ _ ,=-==. -- , mnnnui n h m l

Redundant parentheses enclosing universalfixed expressions AI-00235/05 1
88-05-23 ra WJ

!standard 04.05.05 (11) 88-05-23 AI-00235/05
!class ramification 84-04-13
!status approved by WG9/AJPO 88-02-05

I !status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (6-0-2) 87-02-18 (pending editorial review)
!status work-item 87-01-15
!status received 84-04-13
!references 83-00344
!topic Redundant parentheses enclosing universalfixed expressions

!summary 87-01-15

An expression having type universalfixed can be enclosed in parentheses
before being converted to some other numeric type.

!question 87-05-05

4.5.5(11) requires that the result of either fixed point multiplication or
fixed point division "must always be explicitly converted to some numeric
type." It is not clear whether this means that such fixed point operations
must occur syntactically as the immediate operand of a (numeric) type
conversion, as in

DUR DURATION;

DUR := DURATION(DUR*DUR);

or whether there are ANY other allowed syntactic variations. In particular,
what about

DUR :- DURATION((DUR*DUR)); -- are extra parens legal? (yes)
DUR :- DURATION(((DUR/DUR)))M; -- are extra parens legal? (yes)

!response 87-10-15

4.5.5(11) says:

Multiplication of operands of the same or of different fixed
point types is exact and delivers a result of the anonymous
predefined fixed point type universal-fixed whose delta is
arbitrarily small. The result of any such multiplication must
always be explicitly converted to some numeric type. This
ensures explicit control of the accuracy of the computation. The
same considerations apply to division of a fixed point value by
another fixed point value. No other operators are defined for
the type universalfixed.

Enclosing a multiplication or division in parentheses and then converting the
parenthesized expression does satisfy the requirement to convert the result
of these fixed point operations.

Ada Commentary ai-00245-ra.wj downloaded on Tue Aug 9 14:31:15 EDT 1988

Type conversion conformance for renamed subprogram/entry calls AI-00245/08 1
88-05-23 ra WJ

!standard 06.04.01 (03) 88-05-23 AI-00245/08
!standard 08.05 (08)
!class ramification 84-05-14
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 85-02-04
!status received 84-05-14
!references AI-00318, 83-00363
!topic Type conversion conformance for renamed subprogram/entry calls

!summary 87-08-20

When a type conversion is used as an actual parameter corresponding to an IN
OUT or OUT formal parameter and the subprogram being called was declared by a
renaming declaration (renaming either a subprogram or entry), the name given
as the type mark (in the type conversion) must conform to the name given for
the corresponding parameter of the denoted subprogram or entry (not the name
given in the renaming declaration).

!question 87-01-16

Section 8.5(8) states that the parameter subtypes in a subprogram renaming
are those of the original subprogram declaration. Section 6.4.1(3) states
that when a type conversion is used as an actual parameter corresponding to
an IN OUT or OUT parameter, "the type mark must conform (see 6.3.1) to the
type mark of the formal parameter." Which type mark is used in the case of a
Leiianled subprogram? Consider:

OBJ : POSITIVE;
procedure PROC (X : in out INTEGER) ...
procedure RENA (Y : in out POSITIVE) renames PROC;

RENA(INTEGER(OBJ)); -- (1) Legal? (yes)
RENA(POSITIVE(OBJ)); -- (2) Legal? (no)

Which of these calls is legal?

!response 87-01-18

8.5(8) says:

The subtypes of the parameters and result (if any) of a renamed
subprogram or entry are not affected by renaming. These subtypes
are those given in the original subprogram dec- laration, generic
instantiation, or entry declaration (not those of the renaming
declaration); even for calls that use the new name.

This says the name for RENA's formal parameter subtype is INTEGER, the name
given in the declaration of the denoted subprogram. For two simple names to
conform, the visibility rules must give them the same meaning (6.3.1(5)),

Type conversion conformance for renamed subprogram/entry calls AI-00245/0
8 2

88-05-23

ra WJ

i.e., the names must refer to the same declaration (8.3(2-3)). Since INTEGERand POSITIVE are declared by different declarations, (2) is illegal.

Ada Commentary ai-00258-bi.wj downloaded on Tue Aug 9 14:24:30 EDT 1988

'POSITION etc. for renamed components AI-00258/06 1
88-06-13 BI WJ

!standard 13.07.02 (07) 88-06-13 AI-00258/06
!standard A (34)
!class binding interpretation 84-05-26
!status approved by WG9/AJPO 88-02-05 (corrected in accordance with AI-00503)
!status approved by WG9/AJPO 86-07-22
!status approved by Director, AJPO 86-07-22
!status approved by wG9/Ada Board 86-07-22
!status approved by Ada Board 86-07-22
!status WGI4/ADA Board approved 84-11-27
!status WG14-approved 84-11-27
!status board-approved 84-11-26
!status committee-approved 84-06-28
!status work-item 84-06-12
!status received 84-05-26
!references 83-00368, 83-00860
!topic 'POSITION etc. for renamed components

!summary 84-09-10

The prefix for 'POSITION, 'FIRST BIT, and 'LAST BIT must have the form R.C,
where R is a name denoting a record and C is the name of a component of the
record.

!question 84-09-10

Can a name declared by a renaming declaration be used with the 'POSITION,
'FIRST BIT, and 'LAST BIT attributes? The definitions in 13.7.2(7-10) all
use the notation RTC, suggesting that the prefix of these attributes must
have the form of a selected component whose prefix denotes a record, but
Annex A(34) says that P'POSITION is allowed "for a prefix P that denotes a
.cmp o n.... of a record object". The wording in the annex allows a name
declared by a renaming declaration as a prefix for 'POSITION, while the
wording in 13.7.2 seems to disallow such usage. Which wording is correct?

!recommendation 84-09-10

The wording in the Annex is a summary of the actual definition, which is
given in 13.7.2(7).

!discussion 88-06-13

The preferred interpretation from an implementer's viewpoint is to require
that the prefix have the form of a selected component whose prefix denotes a
record, because of examples like the following:

type R is record
Cl : String (1..M); -- M not compile-time determinable
C2 : String (1..N); -- N not compile-time determinable

end record;

type AccR is access R;

'POSITION etc. for renamed components AI-00258/06 2
88-06-13 BI WJ

function F return AccR is
begin ... end F;

package P is
subtype STR N is STRING(I..N);
Obj : R
Ren C2 STRN renames F.all.C2;

end P;-

Now consider the following attributes:

P.Obj.Cl'Position Easy to compute.
P.Obj.C2'Position Must be computed at run time since Cl's

length is not static.
F.all.C2'Position Same as for P.Obj.C2'Position.
P.RenC2'Position Illegal?

The last case presents a problem because P.RenC2 would normally be
implemented as a pointer to the second component of the object containing
component C2. But the value of the P.Ren C2'Position must be calculated
using the address of the object containing C2. The code needed to calculate
this address cannot usually be generated at the point where P.Ren C2 is
written. For example, one cannot reevaluate F.all in order to determine the
object containing Ren C2. So, because of the possibility of writing P.Ren
C2'Position, the elaboration of the renaming declaration must determine and
save the address of F.all (i.e., of the object containing C2). This overhead
would be incurred for every renaming of a record component.

It was not the intent to impose such an implementation overhead on renamings
of record components. The wording in 13.7.2(7-10) justifies limiting the use
of the 'Position, 'First Bit, and 'Last Bit attributes to those contexts in
which the prefix has the form of a selected component whose prefix denotes a
record. The wording in the Annex is not definitive.

Ada Commentary ai-00263-bi.wj downloaded on Thu Aug 11 16:50:19 EDT 1988

A named number is not an object AI-00263/06 1
88-05-23 BI WJ

I!standard 03.02 (08) 88-05-23 AI-00263/06
!standard 13.05 (04)
'standard 13.07.03 (03)
!standard 13.07.03 (05)
!class binding interpretation 84-07-29
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
I!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (8-0-1) 87-02-17 (pending editorial review)
!status work-item 87-01-14
!status received 84-07-29
!references 83-00391, 83-00843
!topic A named number is not an object

!summary 87-03-22

A -imber declaration declares a named number, which is not an object.

The elaboration of a number declaration proceeds by evaluating the
initialization expression and creating the named number. The value of the
initialization expression then becomes the value of the named number.

!question 87-05-05

The SLcndard implies that named numbers are not objects, by explicitly
mentioning named numbers in addition to objects when both are allowed (see,
for example, 4.4(3)). However, 3.2(8) confuses the matter by stating that:

A number declaration is a special form of object declaration ...

is a named number an object? The distinction matters in a few places. For
example, is an address clause allowed for a named number? Do the elaboration
rules for object declarations apply to number declarations?

!recommendation 87-03-22

A number declaration declares a named number, which is not an object.

The elaboration of a number declaration proceeds by evaluating the
initialization expression and creating the named number. The value of the
initialization expression then becomes the value of the name number.

!discussion 87-07-07

3.2(1-2) states:

An object is ... an object declared by an object declaration ...

Since an object declaration and a number declaration are distinct syntactic
categories (see 3.2(9)), a named number is not an object even though 3.2(8)
states:

A named number is not an object AI-00263/06 2
88-05-23 BI WJ

A number declaration is a special form of object declaration ...

and 3.2.2(1) states:

A number declaration is a special form of constant declaration.

Since a named number is not an object, a named number cannot be given as the
prefix for the attributes 'ADDRESS and 'SIZE, nor can an address clause be
given for a named number.

Since a number declaration is not an object declaration, the elaboration of
number declarations is not covered by the rules for elaborating object
declarations. However, the elaboration rules for number declarations are
clearly intended to be similar to those for object declarations.

Ada Commentary ai-00295-bi.wj downloaded on Thu Aug 11 09:47:35 EDT 1988

Evaluating the variable in an actual parameter type conversion AI-00295/05
88-05-23 BI W,

!standard 06.04.01 (04) 88-05-23 AI-00295/0!
!class binding interpretation 84-10-16
I!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
I!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (8-0-1) 87-02-17 (pending editorial review)
!status work-item 87-01-12
!status received 84-10-16
!references AI-00024, 83-00442
!topic Evaluating the variable in an actual parameter type conversion

!summary 87-03-13

For an actual parameter (of any type) of mode in out or out that is a typi
conversion, the variable name is evaluated before the call and therefori
determines the denoted entity.

!question 87-05-05

The first two sentences of 6.4.1(4) read:

The variable name given for an actual parameter of mode in out or
out is evaluated before the call. If the actual parameter has
the form of a type conversion, then before the call, for a
parameter of mode in out, the variable is converted to the
specified type; after (normal) completion of the subprogram body,

The first sentence appears to apply only to actual parameters that are simpl
variable names, but not to actual parameters that are type conversions o
variable names. The second sentence mentions mode in out, but not mode out
implying by omission that type conversions for mode out are not performe
before the call. However, AI-00024 states that type conversions for mode ou
are performed before the call for array and access types (implying that tb
variable name is evaluated); but its discussion section says that for recox
and scalar types, conversion before the call is not necessary.

Consider the following example:

declare
type INT is new INTEGER;
type ARR is array (1 .. 10) of INT;

I : INTEGER :- 2;
A : ARR :- (others -> 0);

procedure P (J : out INTEGER; K in out INTEGER) is
begin

K :- K + 1;
J :- 10;

end P;

Evaluating the variable in an actual parameter type conversion AI-00295/05 2
88-05-23 BI WJ

begin
P (INTEGER (A (I)), I);

end;

Unless the scalar variable A(I is evaluated before the call, it is not clear
whether A(2) or A(3) is updated.

For an actual parameter (of any type) of mode in out or out that is a type
conversion, is the variable name evaluated before the call?

!recommendation 87-03-16

For an actual parameter of mode in out or out that is a type conversion, the
variable name is evaluated before the call.

!discussion 87-08-20

It was intended that the first sentence of 6.4.1(4) include the case of
variable names within type conversions; such variable names are to be
evaluated before the call. So A(2) in the example is updated.

Ada Commentary ai-00305-bi.wj downloaded on Thu Aug 11 09:47:33 EDT 1988

T'ADDRESS when T is a task type yields the task object address AI-00305/05 I
88-05-23 BI WJ

!standard 13.07.02 (03) 88-05-23 AI-00305/05
!class binding interpretation 84-10-16
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!statns approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (7-1-1) 87-02-17 (pending editorial review)
!status work-item 87-01-14
!status received 84-10-16
!references 83-00439
!topic T'ADDRESS when T is a task type yields the task object address

!summary 87-03-22

If T denotes a task type, then within the body of task unit T, the T in T'
ADDRESS is considered to refer to the name of the task object that designates
the task currently executing the body, i.e., T'ADDRESS returns the address of
the object.

!question 87-03-22

Inside the body of a task type T, 9.1(4) says:

the name of the corresponding task unit can also be used to refer
to the task object that designates the task currently executing
the body.

The 'ADRESS attribute is defined both for objects and program units. Within
the body of task type T, T can be used both to denote a task object and a
task unit:

task type T;

task body T is
X : INTEGER;

begin
... T.X :- 5; -- Use of T as unit name
... T'CALLABLE -- Use of T as object name
... T'ADDRESS ... -- Address of object or code? (object)

end T;

If the T in T'ADDRESS is considered to be the name of the task unit, then the
value returned should be the "machine code associated with the corresponding
body" (13.7.2(3)). If it is considered to be the name of a task object, then
it should return "the address of the first of the storage units allocated" to
the object (13.7.2(3)). Which value does T'ADDRESS yield?

!recommendation 87-03-22

If T denotes a task type, then within the body of task unit T, the T in T
ADDRESS is considered to refer to the name of the task object that designates
the task currently executing the body.

T'ADDRESS when T is a task type yields the task object address AI-00305/05 2
88-05-23 BI WJ

!discussion 87-03-22

The current wording does not provide a clear basis for deciding which value
should be returned. The intent, however, is that within the body of T, T
refers to the task object that designates the task currently executing the
body; therefore, within the body, T'ADDRESS should return the address of this
task object. Outside the body, T can only refer to the task unit, never a
task object, so T'ADDRESS should then return the address of T's machine code.

Ada Commentary ai-00306-bi.wj downloaded on Thu Aug 11 09:47:13 EDT 1988

Pragma INTERFACE: allowed names and illegalities AI-00306/15 1
88-05-23 BI WJ

!standard 13.09 (03) 88-05-23 AI-00306/15
!standard 02.08 (09)
!class binding interpretation 84-10-16
!status approved by WG9/AJPO 88-02-05

1 !status approved by Director, AJPO 88-02-05
I !status approved by WG9/Ada Board 87-12-07

!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (10-0-3) 87-02-17 (by ballot) (pending
editorial review)
!status panel/committee-approved (7-0-2) 86-11-13 (pending letter ballot)
!status work-item 86-09-10
!status failed letter ballot (2-9-2) 86-09
!status committee-approved (8-0-1) 86-05-13 (pending letter ballot)
!status committee-approved (6-1-0) 86-02-21 (pending editorial review)
!status work-item 86-01-24
!status received 84-10-16
!references 83-00445, 83-00492, 83-00637, 83-00697, 83-00718, 83-00726,

83-00790
!topic Pragma INTERFACE: allowed names and illegalities

!summary 87-08-20

If a pragma INTERFACE names a language that is acceptable to an implemen-
tation, the subprogram name must denote one or more subprograms declared
explicitly earlier in the same declarative part or package specification.
(The pragna has no effect if no named subprogram satisfies the requirements.)
The pragma is applied to all such subprograms other than enumeration literals
and subprograms declared by generic instantiation.

If a subprogram named in the pragma was declared by a renaming declaration,
the pragma applies to the denoted subprogram, but only if the denoted
subprogram otherwise satisfies the above requirements.

It is illegal to apply a pragma INTERFACE to a subprogram for which a pragma
INTERFACE has already been applied.

If a pragma INTERFACE applies to a subprogram, it is illegal to provide a

body for the subprogram.

!question 86-07-01

The pragma INTERFACE is applied to a subprogram. Can the pragma be applied to
any of the following subprograms?

a. enumeration literals

b. attributes that denote functions

c. predefined operators

d. derived subprograms

Pragma INTERFACE: allowed names and illegalities AI-00306/15 2
88-05-23 BI WJ

e. subprogram names declared by renaming declarations

f. subprograms declared by generic instantiations

g. subprograms declared by subprogram-body declarations

If an overloaded name given in a pragma INTERFACE denotes several subprograms
of which only a few satisfy the requirements for the pragma, to which
subprograms does the pragma apply, if any?

Is a pragma INTERFACE ignored if it names a subprogram that has a body, or is
it illegal to provide such a body?

What is the effect if a pragma INTERFACE is given more than once for the same

subprogram?

!recommendation 87-08-20

If a pragma INTERFACE names a language that is acceptable to an
implementation, the subprogram name must denote one or more subprograms
declared explicitly earlier in the same declarative part or package
specification. The pragma is applied to all such subprograms other than
enumeration literals and subprograms declared by generic instantiatin.

It is illegal to apply a pragma INTERFACE to a subprogram for which a pragma
INTERFACE has already been applied.

If a pragma INTERFACE applies to a subprogram, it is illegal to provide a
body for the subprogram.

!discussion 86-08-20

The pcagrna INTERFACE gives a means of providing a subprogram body other than
by a subprogram body declaration. The pragma was only intended to be applied
to subprograms for which users can provide bodies. In particular, since an
explicit subprogram body declaration cannot be provided for a subprogram that
is an enumeration literal, an attribute, a predefined operator, or a derived
subprogram, it was not intended that the pragma apply to such subprograms.
For example:

declare
type INT is range 1..10;
pragma INTERFACE (FORTRAN, "+"); -- ignored

The pragma is ignored since the only subprogram "+" declared earlier in this
declarative part is the implicitly declared predefined "+".

13.9(3) says that the subprogram name in the pragma INTERFACE is allowed to
"stand for" several overloaded subprograms. Suppose the subprogram name
stands for several subprograms, not all of which are declared earlier in the
same declarative part or package specification:

mmm mm... I

Pragma INTERFACE: allowed names and illegalities AI-00306/15 3
88-05-23 BI WJ

procedure P (B : BOOLEAN); -- P.1
package R is

procedure P (I : INTEGER); -- P.2
pragma INTERFACE (XXX, P);

rhm. 1ntent is that the pragma INTERFACE be applied only to P.2 since P.2 is
the only subprogram that is declared earlier in the same package
specif cation; a body must be provided for P.1.

In adcition, if a subprogram is overloaded, the pragma INTERFACE applies only
to those subprograms for which bodies can be provided, e.g.:

package P1 is
type ENUM is (A, B, C);
function B return INTEGER;
pragma INTERFACE (XXX, B);

end P1;

The pragma only applies to function B if it is supported for language XXX; it
does not apply to enumeration literal B. Similarly:

package T is
function P return INTEGER;

end T;

package body T is
procedure P;
[unction P return INTEGER is
begin ... end P;
pragma INTERFACE (XXX, P);

begin

In this case, the pragma only applies to procedure P since function P is not
declared earlier in the same declarative part. (Function P is declared in
the package specification.)

13.9(3) also says:

A body is not allowed for such a subprogram (not even in the form
of a body stub) since the instructions of the subprogram are
written in another language.

This restriction means that if the pragma is accepted and is applied to
certain subprograms, it is illegal to provide a body for any of these
subprograms. For example:

package P2 is
procedure R (B : BOOLEAN); -- R.1
procedure R (I : INTEGER); -- R.2
pragma INTERFACE (YYY, R); -- (1)

end P2;

Pragma INTERFACE: allowed names and illgalities AI-00306/15 4
88-05-23 BI WJ

package body P2 is
procedure R (B : BOOLEAN) is ... ; -- (2); illegal

end P2;

Since the pragma at (1) specifies that a body for R.1 and R.2 is supplied in
language YYY, it is illegal to supply a body for either R.1 (as in (2)) or
R.2. Similar illegalities can arise in a declarative part:

declare
procedure R (B : BOOLEAN); -- R.1
procedure R (I : INTEGER); -- R.2
pragma INTERFACE (YYY, R);

procedure R (B : BOOLEAN) is ...; -- illegal

It is immaterial whether the pragma appears before or after the body:

declare
procedure R (B : BOOLEAN); -- R.1
procedure R (I : INTEGER); -- R.2
procedure R (B : BOOLEAN) is ...; -- illegal
pragma INTERFACE (YYY, R);

begin

If the ps:agma is accepted for language YYY, the pragma applies to R.l and R.2
;o i4t ;. illegal to provide a body for R.1 (or R.2). It is similarly illegal
ko provide a body for R.1 even if the original declaration of R.l's
specification is deleted:

declare
procedure R (I : INTEGER); -- R.2
procedure R (B : BOOLEAN) is ...; -- illegal body for R.I
pragma INTERFACE (YYY, R);

begin

The pragma applies to subprogram R.I as well as to R.2, since R.1 is declared
explicitly (by the subprogram body declaration). Since the subprogram body
declaration also provides a body for R.l, and since it is intended to be
illegal to provide a body for a subprogram to which the pragma applies, the
declarative part is illegal.

Suppose the pragma INTERFACE is given more than once for the same subprogram:

package P2 is
procedure P;
pragma INTERFACE (LI, P);
function P return INTEGER;
pragma INTERFACE (Li, P); -- illegal

end P2;

If Li is an acceptable language, the second pragma would apply to procedure P
as well as to function P. Since the pragma in effect provides a body for the
subprograms to which it applies, and since two bodies cannot be given for the
same subprogram, the second pragma is illegal.

Pragma INTERFACE: allowed names and illegalities AI-00306/15 5
88-05-23 BI WJ

If the subprogram named in the pragma was declared by a renaming declaration,
the pragma applies to the denoted subprogram, but only if the denoted
subprogram otherwise satisfies the requirements, i.e., the denoted subprogram
must be explicitly declared earlier in the same declarative part or package
specification and must not be an enumeration literal or a generic instance.
The ability to use names declared by renaming declazattijns makes it easier to
supply an Ada body for only one of two overloaded subprograms:

package P3 is
function OVERLOADED return INTEGER;
procedure OVERLOADED;
procedure NOBODY renames OVERLOADED;
pragma INTERFACE (LANGUAGE, NOBODY);

end P3,

The pragma applies just to the subprogram denoted by NO BODY, i.e., the
procedure. A body must still be provided for the function OVERLOADED.

Ada Commentary ai-00324-bi.wj downloaded on Thu Aug 11 09:47:12 EDT 1988

Checking the subtype of a non-null access value AI-00324/08
88-05-23 BI I

* !standard 03.08 (06) 88-05-23 AI-00324/
!class binding interpretation 86-11-14
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-03-16 (reviewed)
!stailus panel/committee-approved (6-0-0) 86-11-14 (pending editorial review
!stat.s panel/committee-approved (8-1-0) 86-09-10 (pending editorial review
!statim work-item 8(-01-23
!staf& ceceived 85-01-26
!refererices 83-00494, 83-00806, 83-00826
itopic Checking the subtype of a non-null access value

!summary 86-01-28

An access value of type T belongs to every subtype of T if T's designat
type is neither an array type nor a type with discriminants.

!question 86-08-13

3.8(6) says:

An access value belongs to a corresponding subtype of an access
type either if the access value is the null value or if the value
of the designated object satisfies the constraint.

1.1. S.) -3ays:

The initialization of an object (...) checks that the initial
value belongs to the subtype of the object;

.(U: ;~:ays (for an assignment statement):

A check is then made that the value of the expression belongs to
the subtype of the variable.....

The definition of compatibility of an access value and its subtype, and t
definitions of compatibility in object initializations and in assignme
statements apparently require an evaluation of the object designated by t
access value, and this suggests that all programs like the following a
erroneous:

declare
type T is access INTEGER range 110..120;
V : T :- new INTEGER; -- erroneous? (no)

begin
V :- new INTEGER; -- erroneous? (no)

end;

Tn each case, the allocated object is not initialized and thus has
undefined value. Hence, V is assigned an access value whose designat
object's value may violate the range constraint 110..120. If so, shou
CONISTRAINTERROR be raised? Are these examples erroneous?

Checking the subtype of a non-null access value AI-00324/0E
88-05-23 BI

!recommendation 86-12-28

Every access value belongs to its corresponding access type. An access va
belongs to a subtype of an access type if the access value is the null va
or if the (access) subtype imposes no constraint on the designated object;
the (&::.es subtype imposes a constraint (such a constraint is possible
if the desQgnated type is an array type or a type that has a discriminar
the access value belongs to the access subtype if the value of the design
object satisfies the constraint.

!discussion 86-10-13

3.8(6i df tiaes what it means for an access value to "belong" to a subtyp(
an access type in the case where a constraint has been imposed on the ac(
type %'ince 3.8(6) mentions "the constraint"). Such a constraint cai
impo.;cO _-1y when the designated type is an array type or a type
discriminaats. 3.8(6) does not define what it means for an access valu
"belong" to an access type or subtype when no constraint is imposed, as
the case when the designated type is a scalar type (since no range constri
can then be imposed on the access type). The intent, however, is clear:
the access type is unconstrained, every access value of the type belong!
the access type, and to any of its subtypes. In particular, this holds
the designated type is a scalar type or a private type without discrimina
In such cases, there is no need to check that the value of the designi
object, if any, satisfies a constraint. Consequently, the examples givel
the qui.s1ti o are not erroneous.

Ada Commentary ai-00336-ra.wj downloaded on Tue Aug 9 16:58:21 EDT 1988

Address clauses for subprogram bodies AI-00336/05
88-05-23 ra TA

I !standard 13.05 (05) 88-05-23 AI-00336/C
!class ramification 86-04-11
!status approved by WG9/AJPO 88-02-05

* !status approved by Director, AJPO 88-02-05
Istatus approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (7-0-2) 87-02-17 (pending editorial review)
!stat,s work-item 86-04-11
!status received 85-05-02
!references 83-00535
!topi.c Address clauses for subprogram bodies

!summary 86-04-16

An address clause cannot be given for a subprogram whose body acts as it
declaration.

I!question 87-12-07

Can an address clause be given for a subprogram whose body serves as it
declaration? For example:

-- Example 1
procedure P;
for P use at ...; -- legal

procedure P is ... end P;

-- Example 2
procedure Q is ... end Q;
for Q use at ...; -- legal? (no)

!response 87-03-16

A representation clause is a basic declarative item but not a latE
declarative item (3.9(2)). This means a representation clause cannot appea
after a body in a declarative part; to give an address clause for
subprogram, the clause must precede the subprogram's body. (This means thez
must be an explicit declaration that precedes the body, even if such
declaration is not otherwise needed.)

Ada Commentary ai-00356-bi.wj downloaded on Wed Aug 10 17:03:40 EDT 1988

Access values that designate deallocated objects AI-00356/08 1
88-05-23 BI WJ

!standard 13.10.01 (06) 88-05-23 AI-00356/08
!standard 04.08 (07)
!standard 03.02.01 (18)
!class binding interpretation 85-06-18
!status approved by WG9/AJPO 88-02-05
lstatl" approved by Director, AJPO 88-02-05
!stat;.s approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-03-16 (reviewed)
!status panel/committee-approved (8--0-0) 86-11-13 (pending editorial review)
!stat:r work-item 86-05-20
!status -ceturned to committee by WG9 86-05-09
!status committee-approved (9-0-0) 85-11-20
!status received 85-06-18
!references 83-00555
!topic Access values that designate deallocated objects

!summary 87-03-13

The storage occupied by a designated object can be reclaimed immediately
after applying an instance of the unchecked deallocation procedure to an
access variable that designates the object.

If two objects having non-null access values designate the same object and an
instance of the unchecked deallocation procedure is applied to one of the
objects, the other object is considered to have an undefined value; any
attempt 1:o use such a value makes execution of the program erroneous.

Su IoC-[., if a name declared by a renaming declaration denotes a
subhe:-npuntnt of an object that is later freed by calling an instance of the
inc 2 d deallocation procedure, the name is considered to have an undefined
-ralnea any attempt to evaluate the name (e.g., by assigning a value tn it)

ariake,, ,--xofution of the program erroneous.

!quesicioa 86-07-30

Consider the following code fragment:

Y :- X;
FREE(X);
X :- new CELL;
if X - Y then ... end if;

The value of Y is not altered by the call to FREE. Therefore, Y will
designate the same object after the call as it did before the call.
Moreover, since Y still designates the object, the space occupied by the
object cannot be reclaimed immediately (4.8(7)):

An implementation must guarantee that any object created by the
evaluation of an allocator remains allocated for as long as this
object or one of its subcomponents is accessible directly or
indirectly, that is, as long as it can be denoted by some name.

Since the space occupied by Y.all cannot be reclaimed immediately, the

Access values that designate deallocated objects AI-00356/08 2
88-05-23 BI WJ

allocator, new CELL, must return an access value that is not equal to Y, and
the result of the comparison must be FALSE. (Note that the Standard nowhere
states that comparing two access values involves accessing the objects they
designate, so 13.10.1(6) cannot be invoked to make the program erroneous.)

1J.10.1(5) indicates that calling the unchecked storage deallocation
procedure allows the storage occupied by a designated object to be reclaimed.
But because 4.8(7) forbids reclaiming storage while it can still be accessed,
ft appears that the unchecked deallocation procedure does not allow immediate
ceclamation of storage. Was this the intent?

!recouuonmidation 86-12-28

The storage occupied by a designated object can be reclaimed immediately
after applying an instance of the unchecked deallocation procedure to an
access variable that designates the object.

If two objects having non-null access values designate the same object and an
instance of the unchecked deallocation procedure is applied to one of the
objects, the other object is considered to have an undefined value; any
attempt to use such a value makes execution of the program erroneous.

Similarly, if a name declared by a renaming declaration denotes a
subcomponent of an object that is later freed by calling an instance of the
uncheck3d deallocation procedure, the name is considered to have an undefined
vatlue; any Attempt to evaluate the name makes execution of the program

~di~ iOfl86-12 -28

i._. t '3)says:

t'EE(X), when X is not equal to NULL, is an indication that the
object designated by X is no longer required, and that the
storage it occupies is to be reclaimed.

It was intended that the unchecked deallocation procedure allow the storage
occupied by a designated object to be reclaimed immediately, even if the
designated object, or one of its subcomponents, can be denoted by some name.
(A subcomponent can be denoted by a name declared by a renaming declaration.)

Given the intent to allow immediate storage reclamation, it was also intended
that the programmer be responsible for avoiding use of names that denote
objects (or subcomponents of objects) whose storage has been marked for
reclamation by the unchecked deallocation procedure. 13.10.1(6) expresses
this intent in terms of actually attempting to access the deallocated object.
It was an oversight that this rule does not cover all uses of such access
values, e.g., in comparisons, and for names that denote subcomponents of a
deallocated object. In particular, for a name declared by a renaming
declaration and denoting a subcomponent of a deallocated object, an attempt
to assign to the subcomponent should be considered erroneous even though no
attempt is being made to use the VALUE of the subcomponent. Hence, the
recommendation states that an attempt to EVALUATE the name is erroneous. On
the other hand, it is not erroneous to assign a new access value to a

Access values that designate deallocated objects AI-00356/08
88-05-23 BI t

variable that currently denotes a deallocated object; only an attempt to Us
the value of such a variable is erroneous.

Ada Commentary ai-00366-ra.wj downloaded on Wed Aug 10 17:03:39 EDT 1988

The value of SYSTEM.TICK for different execution environments AI-00366/07 1
88-05-23 ra WJ

!standard 13.07.01 (07) 88-05-23 AI-00366/07
!class ramification 86-07-30
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 83-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
1status panel/comnmittee-approved (10-0-3) 87-02-17 (by ballot)
!status panel/committee-approved (5-0-0) 86-11-14 (pending letter ballot)
!status work-item 86-07-30
!stattis teceived 85-07-21
!references AI-00201, 83-00581
!topic The value of SYSTEM.TICK for different execution environments

!summary 96-12-15

SYSTEM.TICK should have a value that reflects the precision of the clock in
the main program's execution environment. If SYSTEM.TICK does not have an
appropriate value, the effect of executing the program is not defined.

!question 86-12-15

Suppose an implementation's execution environment provides a basic clock
period whose accuracy is dependent on the electrical line frequency (1/60 of
a second in the USA or 1/50 of a second elsewhere, respectively). What
should the value of SYSTEM.TICK be? Must an implementation supply different
SYSTEM packages depending on clock precision, even when the clock precision
,s dietrmined by the execution environment's line frequency?

Since SYSTEM.TICK is a constant, what happens to an Ada program that is
compiled in the USA (and gets a SYSTEM.TICK of 1.0/60.0) if the executable
image is brought to Europe?

!response R6-12-15

The value for SYSTEM.TICK should reflect the precision of the clock in the
expected execution environment (AI-00201). If a program image is executed in
an environment in which SYSTEM.TICK does not have the correct value, the
effect is not defined by the language, any more than the effect is defined if
an attempt is made to execute a program in an execution environment that is
in some other way incompatible with the assumptions made when the program was
compiled.

Ada encourages the portability of Ada programs at the source level and not at
the executable image level. If two execution environments are identical, an
Ada program could be ported in its executable image form. Otherwise, the
program should be compiled for (or cross-compiled to) the intended target
execution environment.

Ada Commentary ai-00367-bi.wj downloaded on Tue Aug 9 14:31:16 EDT 1988

Deriving from types declared in a generic package AI-00367/06 1
88-05-23 BI WJ

!standard 03.04 (11) 88-05-23 AI-00367/06
!standard 12.01 (05)
!class binding interpretation 86-07-31
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
'stat,,r approved by WG9/Ada Board 87-12-07
state ,(pp~roved by Ada Board 87-07-30
statu: oanel/committee-approved 87-01-19 (reviewed)
!status panel/committee-approved (10-0-0) 86-11-13 (pending editorial review)
!statkis work-item 86-07-31
lstatu ,eceived 85-07-30
!r4f-erpnces AI-00398, 83-00589
!topic. Oeriv:ng from typej declared in a generic package

!summrt 86 10-10

The rules ;oncerning derivable subprograms in the visible part of a
oongeneric package are applicable in the visible part of a generic package.
(The effect of a derived type declaration in an instance of a generic unit is
discussed in AI-00398.)

!question 85-07-30

Cons iotr ;:.hr following example:

tuenu cic
i.,n ge 7, is

type T is (ALPHA, BETA);
procedure P (X : T);

jriv.tte
type DT is new T;

und 1;

Ls 'subrograna P derived for type DT? The parent type, T, is declared in the
visible part of a generic package, and the Standard makes a clear distinction
betwe'i.N a package and a generic package, e.g., 7(1) and 12(1). The rules
, , L-qg which subprograms are derivable state that certain subprograms are
derivable when a parent type is declared in the visible part of a package
(3.4(11)). Since parent type T in the above example is declared in the
visible par; of a generic package, these rules seemingly do not apply. Is it
the intent that the rules concerning derivable subprograms be considered to
apply co the visible part of generic packages as well as the visible part of
nongeneric packages?

!recommendation 85-07-30

The rules given in 3.4(11) apply when the parent type of a derived type
definition is declared in the visible part of a generic package.

!discussion 87-12-07

It was intended that when a parent type in a derived type definition is
declared in the visible part of a generic package, the rules given in 3.4(11)
for types and subprograms declared in nongeneric packages also apply to

Deriving from types declared in a generic package AI-00367/06 2
88-05-23 BI WJ

(parent) types and subprograms declared in generic packages. (The visibility
rules only allow such type derivations within the generic unit itself, since
no type declared in the visible part of a generic package is visible outside
the generic unit, either directly or by selection.)

Ada Commentary ai-00374-bi.wj downloaded on Wed Aug 10 17:01:49 EDT 1988

An attempt to access an undefined constant is erroneous AI-00374/06
88-05-23 BI

!standard 03.02.01 (18) 88-05-23 AI-00374)
!class binding interpretation 85-08-22
!statut approved by WG9/AJPO 88-02-05
!statii approved by Director, AJPO 88-02-05
!status ..pproved by WG9/Ada Board 87-12-07
!statiz ilproved by Ada Board 87-07-30
'statu& panel/committee-approved 87-01-19 (reviewed)
star'i: panel/committee-approved (8-0-0) 86-11-13 (pending editorial revie
st .u- ".,ork-item 86-10-10
st ; ceived 85 -08-22
fref- :,ices 83-00616, 83-00621
lw,'-' attempt to access an undefined constant is erroneous

!sunwtav h 6-12-03

The execution of a program is erroneous if it attempts to evaluate a sca"
:ONSTANT with an undefined value.

!question 87-01-19

3.2.1(18) states:

The execution of a program is erroneous if it attempts to
r-valuate a scalar variable with an undefined value.

The , ; ,,? fragment evaluates a scalar constant with undefined va].Ie:

L REC is
-ecord

UNDEFINED INTEGER;
znd record;

u.L :REC; (I)
zonstant REC RI; - (2)

... R2.UNDEFINED ... -- (3)

P .CUA FINED is undefined at (1). Since R1 is non-scalar, evaluating R1
not erroneous at (2). R2.UNDEFINED is undefined and used in an expression
(3), but 3.2.1(18) does not apply, since R2.UNDEFINED is a constant, nol
var; ible, Was this the intent?

!recormendaLion 86-12-03

The execution of a program is erroneous if it attempts to evaluate a sca.
CONSTANT with an undefined value.

!discussion 86-10-13

Evaluation of a scalar object having an undefined value was intended to
erroneous. Since constants must be initialized, 3.2.1(18) was writl
assuming that all constants have defined values. The example shows this
not the case, so, to satisfy the intent, 3.2.1(18) should be understood
apply as well to an attempt to evaluate a scalar constant with an undefir
value.

Ada Commentary ai-00375-ra.wj downloaded on Wed Aug 10 17:01:47 EDT 1988

L - " " " '

Restricting the allowed values of a floating point subtype AI-00375/05 1
88-05-23 ra WJ

!standard 03.05.07 (17) 88-05-23 AI-00375/05
!class ramification 85-08-22
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
',tatus approved by Ada Board 87-07-30
lstatus panel/committee-approved 87-03-12 (reviewed)
!status panel/committee-approved (6-0-0) 86-11-14 (pending editorial review)
.status work-item 86-10-05
!statuu received 85-08-22
!references AI-00407, AI-00174, 83-00611
!topic Bestricting the allowed values of a floating point subtype

!summary 86-12-28

Tr- floating point constraint in a subtype indication includes a range
constraint, the range of values that belong to the subtype (i.e., that
satisfy the constraint) is defined by the range constraint. If no range
constraint is present, the range of values that belong to the subtype is not
affected, even though the accuracy of the subtype may be reduced.

!question 86-12-28

The Note 3.5.7(17) reads in part:

The imposition of a floating point constraint on a type mark in a
,nbtype indication cannot reduce the allowed range of values
unless it inclndes a range constraint (the range of model numbers
that correspond to the specified number of digits can be smaller
than the range of numbers of the type mark).

.Jar1 L, .,uAnt by reducing "the allowed range of values"?

,respunse 87-03-13

Consider the following declarations:

type T is digits 5 range 12345.0 .. 56789.0;
subtype ST is T digits 3;

The purpose of the note is to point out that subtype ST has the same range
constraint as type T, i.e., the floating accuracy definition does not change
the set of values that belong to subtype ST. In particular, it is the case
that T'LAST and ST'LAST have the same model interval (as do T'FIRST and ST'
FIRST), since these attributes yield values having ST's type (3.5(7-9)). In
this example, 12345.0 and 56789.0 are model numbers of type T, so the model
intervals contain a single value. Neither ST'FIRST nor ST'LAST is a model
number of subtype ST, since ST's model numbers are redefined by the floating
accuracy definition (3.5.7(15)) and the exact representation of either value
requires more mantissa bits than are allowed for ST's model numbers.
However, this potential inaccuracy in the representation of 12345.0 or
56789.0 is only of importance when attempting to assign one of these values
to a variable having subtype ST (see AI-00407).

Ada Commentary ai-00388-ra.wj downloaded on Tue Aug 9 14:24:28 EDT 1988

Pragmas are allowed in a generic formal part AI-00388/06 1
88-06-13 ra WJ

!standard 02.08 (04) 88-06-13 AI-00388/06
!class ramification 85-10-29
!status approved by WG9/AJPO 88-02-05 (corrected in accordance with AI-00511)
!status approved by WG9/AJPO 86-11-26
!status approved by Director, AJPO 86-11-26
3' ,atu" *pproved by WG9/Ada Board 86-11-18

'statu.-, committee-approved (7-0-2) 85-11-22
,stacu- work-item 85-10-29
s fat, c. ceived 85-09-16
!refet onces 83-00298, 83-00635, 83-00871
:tr,.tn- rragmas are allowed in a generic formal part

Y:,. 85-10-10

Pr~g.-is are allowed in a generic formal part.

!,jtjosi- ion 85-10-10

2.8(4) says:
(Pragmas are allowed] after a semicolon delimiter, but not within

a formal part or discriminant part.

Tn :d .on, 2.8(5) says:

'Pragmas are allowed] at any place where the syntax rules allow a
,--onstruct defined by a syntactic category whose name ends with
"declaration",

; ...-ericformalpart is different from a formalpart, and since a
Lormal part consists of a sequence of genericparameterdeclarations,

;looK 6,.3 mean that pragmas ARE allowed in a generic formal part, or was it
*" - to forbid pragmas in generic formal parts as well?

. ,, 88-06-13

c .,. in the question, the Standard does allow pragmas to appear in
generic formal parts. In particular,

generic
pragma PAGE;
X : INTEGER;
pragma PAGE;

procedure P;

is legal.

Pragmas are terminated with semicolons and are only allowed in contexts where
semicolons are used to terminate constructs. Although a generic formal part,
a formal part, and a discriminant part have similar functions, they use the
semicolon differently. In a generic formal part, the semicolon appears at
the end of each declaration. In a formal part and discriminant part, the
semicolon separates declarations. In particular, a semicolon does not follow

Pragmas are allowed in a generic formal part AI-00388/06 2
88-06-13 ra WJ

the last declaration. If a pragma were allowed after the last declaration,
it would not be separated from the preceding declaration by a semicolon,
since no semicolon is present. A special rule would be needed either to
insert a semicolon in such a case or to forbid pragmas after the last
declaration. Rather than provide a special rule, it was decided to disallow
pragmas in contexts where semicolons separate constructs, namely in formal
parts and discriminant parts.

Ada Commentary ai-00407-bi.wj downloaded on Wed Aug 10 17:01:27 EDT 1988

The operations of a subtype with reduced accuracy AI-00407/ ' 1
88-05-23 BI WJ

!standard 04.05.07 (00) 88-05-23 AI-00407/06
!standard 03.05.08 (16)
!standard 03.05.10 (15)
!standard 05.02 (03)
!class binding interpretation 85-12-29
!statu: . 4pproved by WG9/AJPO 88-02-05
>st>atub approved by Director, AJPO 88-02-05
!scacs approved by WG9/Ada Board 87-12-07
.status approved by Ada Board 87-07-30
st.,,.tu'n panel/committee-approved (10-0-3) 87-02-17 (by ballot)
!status panel/committee-approved (3-0--3) 86-11-14 (pending letter ballot)
!statu3 work-item 86-10-05
!stal.a.' received 85-12-29
!references 33-00691
!topic T1- operations of a subtype with reduced accuracy

!sux.auaLy 87-01-19

When assigning a fixed or floating point value to a variable, the stored
value need only be represented as a model number of the variable's subtype.
Furthermore, if no exception is raised by the assignment, the stored value
belongs to the subtype of the variable.

if a iea! subtype is used as the type mark in a membership test, qualifi-
cation, or explicit conversion, the corresponding operation is performed with
the :icciiricy of the base type and the range of the subtype.

" ,r :,:..,ubLype, the value of the attriblte FIRST or LAST is represented
wi.- at], ast the accuracy of the base type. The values of other att:ibutes

-eal subtype are given exactly.

1A ,h-10-05

3.5. 6 6 says:

The operations of a subtype are the corresponding operations of
the type except for the following: assignment, membership tests,
qualification, explicit conversion, and the attributes of the
first group [BASE, FIRST, LAST, SIZE, DIGITS, MANTISSA, EPSILON,
EMAX, SMALL, and LARGE]; the effects of these operations are
redefined in terms of the subtype.

3.5.7(15) says:

The elaboration of [a subtype indication consisting of a type
mark followed by a floating point constraint] ... creates a
floating point subtype whose model numbers are defined by the
corresponding floating accuracy definition.

What do these two paragraphs together imply about the accuracy with which the
assignment, membership tests, qualification, explicit conversion, and
attribute operations are performed? For example, consider:

The operations of a subtype with reduced accuracy AI-00407/06 2
88-05-23 BI WJ

type T is digits 5;

subtype ST is T digits 3 range 12345.0 .. 15099.0;

X : ST :- 12345.0;

Whadr does "redefining the effect" of assignment in terms of subtype ST mean
here? The effect of assignment is defined in 5.2(3):

For the execution of an assignment statement, the variable name
and the expression are first evaluated ... A check is then made
that the value of the expression belongs to the subtype of the
variable ... Finally, the value of the expression becomes the
new value of the variable.

Ln the case of X's initialization, evaluation of the expression means
unpiicitly converting 12345.0 to T's base type and checking that the
converted value belongs to T's range. Since T's base type has at least 5
digits of accuracy, 12345.0 is a model number. This value certainly belongs
to T's subtype, so it is then assigned to X. Or was the intent to allow the
value of X to be approximated as a model number for ST rather than requiring
that the stored value have at least 5 digits of accuracy, i.e., should one
understand "becomes the new value of the variable" to mean "is allowed to
become a model number of the variable's subtype?" If so, this would seem to
allow the approximation to a model number of ST to occur after the range
check has been performed, and this is too late. 12345.0 belongs to the model
Lnte',:.al 12344.0 .. 12352.0 (since ST'MANTISSA = 11, and 12345.0 is
L6#3039.0#). If 12345.0 is approximated as 12344.0 and becomes the value of
X, can the expression, X in ST, be FALSE after the assignment? Can 12344.0
.n ST evaluate to TRUE? Can it be the case that ST' (12345.0) will raise
O CNSTRAINT ERROR? If the initialization expression for X were ST'FIRST
*,ztead of the literal 12345.0, could CONSTRAINT ERROR be raised? In short,
what does it mean for the "effects" of the operations listed in 3.5.8(16) to
be 'redefined in terms of the subtype?"

Note that the same questions arise for fixed point types, although for fixed
poi.nt, the relevant attributes are BASE, FIRST, LAST, SIZE, DELTA, MANTISSA,
SMALL, LARGE, FORE, and AFT.

!recommendation 86-10-05

If the subtype of the variable in an assignment statement has less accuracy
than the type of the expression, the model interval of the expression is
widened to the smallest containing model interval of the subtype. Any value
in the widened model interval can become the value of the variable, but
CONSTRATNTERROR is raised if the value to be stored does not belong to the
variable's subtype.

If a real subtype is used as the type mark in a membership test, qualifi-
cation, or expiicit conversion, the corresponding operation is performed with
the accuracy of the base type and the range of the subtype.

For a real subtype, the value of the attribute FIRST or LAST is represented
with at least the accuracy of the base type. The values of other attributes
of a real subtype are given exactly.

The operations of a subtype with reduced accuracy AI-00407/06 3
88-05-23 BI WJ

!discussion 87-08-20

3.5.7(.0-12) says that the declaration:

type T is digits 5;

1t; equivalent to:

typ- "floatingpoint type' is new predefinedfloatingpointtype;
subtype T is 'floatingpoint type' digits 5;

The o'ny operations declared for type T arc those declared for the base type
-- no operntions are declared by the subtype declaration itself.
Consequently, all operations for type T are performed using the safe numbers
of the base type. Suppose T'BASE'DIGITS = 'DIGITS, i.e., the base type has
nxactly the accuracy of the subtype. Now consider the effect of the
dpcl.aration of subtype ST:

subtype ST is T digits 3 range 12345.0 .. 15099.0;

No new operations are declared. Let's consider, however, the effect of
evaluating a conversion to subtype ST:

ST (2345.0)

I ,,c:,ding j:,) 4.6(4), the universal real value, 12345.0, is first converted to
'I tyF . The converted value is then checked to see if it be]o:Igs to
t' . This check is performed using the predefined operations of the

.: t , i.e., the check is perforrred with the accuracy of ST's base type.
The . sunse in which the effect of converting to subtype ST is different
... , . c'ifect of converting to the base type is that ST's range is used

r~itO. ? f the range associated with v's base type. Since 12345.0 is a model
"-.,,r <, T'o base type, the conversion is performed exactly. Since ST's
,ange corst'raint is specified with model numbers of type T, the check to see
if tho ccnv-rted value belongs to subtype ST is equivalent to evaluating:

12345.0 in 12345.0 .. 15099.0

This evaluation must yield TRUE, so no exception can be raised by the
conversion. The fact that ST has reduced accuracy does not affect how the
,-onvetsion is performed. Similar reasoning applies for qualification.

Now consider the membership test, 12345.0 in ST. Since the membership test
operation is declared for T's base type, it is performed with the accuracy of
the base type, but uses the range constraint associated with subtype ST. As
for conversion and qualification, the reduced accuracy of subtype ST does not
affect how the membership test is evaluated.

In short, for membership tests, conversion, and qualification, redefining the
effect of these operations in terms of the subtype means using the range of
the subtype but otherwise using the operations of the base type.

A similar conclusion could be derived for the assignment operation, but this
was not the intent. In some implementations, floating point values with more

The operations of a subtype with reduced accuracy AI-00407/06 4
88-05-23 BI WJ

than, say, N digits of accuracy require a double precision representation.
If a variable has a subtype with less than N digits of accuracy, the
intention was that single precision would suffice to hold stored values of
the variable. To achieve this intent and to ensure that the stored value
still satisfies the variable's range constraint after conversion to a less
precise representation, it is essential that the less precise value (the
value that will actually be stored) be checked against the subtype's xange
before the assignment is actually done.

%,r floating point subtypes, the attributes affected by a subtype declaration
are given in the question. The attributes DIGITS, MANTISSA, EPSILON, EMAX,
SMALL, and LARGE return values that depend on the accuracy specified for the
3ubty-pe, and in this sense, the effect of these attributes is defined by the
subtype declaration. Since the values returned by EPSILON, SMALL, and LARGE
are model numbers of the subtype, no inaccuracy is allowed in evaluating
these attributes.

The attributes FIRST and LAST are declared as operations of the base type.
When applied to a subtype, the returned value is therefore a value of the
base type, although the value actually returned depends on the range
specified for the subtype. Hence, for the example given in the question,
since 12345.0 is a model number of the base type, ST'FIRST is exactly equal
to 12345.0, even though ST'FIRST is not a model number of subtype ST.

Simil.-t r-easoning applies to fixed point operations.

Ada Commentary ai-00412-bi.wj downloaded on Wed Aug 10 17:01:25 EDT 1988

Expanded names for generic formal parameters AI-00412/06 1
88-05-23 BI WJ

!standard 04.01.03 (15) 88-05-23 AI-00412/06
!standard 04.01.03 (18)
!standard 12.01 (05)
!class binding interpretation 86-03-06
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (10-0-0) 86-11-13 (pending editorial review)
!status work-item 86-08-08
!status received 86-03-06
!references AI-00504, 83-00716
!topic Expanded names for generic formal parameters

!summaiy 87-03-13

A formal parameter of a generic unit can be denoted by an expanded name.

!question 87-03-13

12.1(5) says:

Within the declarative region associated with a generic
subprogram, the name of this program unit denotes the subprogram
cbtained by the current instajitiation of the generic unit.
Similarly, within the declarative region associated with a
generic package, the name of this program unit denotes the
package obtained by the current instantiation.

." " : ' says:

The prefix [of an expanded name] must denote a construct that is
... a program unit, ... The selector must be the simple name,
character literal, or operator symbol of an entity whose
ieclaration occurs immediately within the construct.

Now consider the following example:

generic
FORMAL : INTEGER;

package P is
Z : INTEGER := P.FORMAL; -- legal? (yes)

end P;

The expanded name P.FORMAL is allowed by 4.1.3(17) if P is considered to
denote the enclosing generic unit, but 12.1(5) says P denotes the package
obtained by the current instantiation, and FORMAL is not declared within any
instance of package P. Is P.FORMAL an allowed name?

!recommendation 87-03-13

Within a generic unit, a simple name or operator symbol declared in a generic
formal part can be the selector of an expanded name whose prefix is either

Expanded names for generic formal parameters AI-00412/06 2
88-05-23 BI WJ

the simple name of the unit or an expanded name whose selector is the simple
name of the unit. Within the generic unit, such an expanded name denotes the
corresponding generic formal parameter.

!discussion 87-03-13

It was the intent to allow expanded names for all entities declared
immediately within a program unit. Consequently, it was intended to allow a
generic fozmal parameter to serve as the selector in an expanded name
denoting the formal parameter, even though the prefix of such an expanded
name is considered to denote "the current instantiation." (In an instance,
such an expanded name denotes the entity corresponding to the formal
parameter, as specified by 12.3(6-12).)

Ada Commentary ai-00422-bi.wj downloaded on Wed Aug 10 17:01:04 EDT 1988

Representation clauses for derived enumeration and record typesAI-00422/06 1
88-05-23 BI WJ

!standard 13.01 (03) 88-05-23 AI-00422/06
!standard 13.03 (02)
!standard 13.04 (02)
!class binding interpretation 86-05-22
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-.2-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-03-16 (reviewed)
!status panel/committee-approved (6-0-0) 86-11-14 (pending editorial review)
!status work-item 86-10-13
!status received 86-05-22
!references 83-00742, 83-00842
!topic Representation clauses for derived enumeration and record types

!summary 87-01-28

An enumeration representation clause or a record representation clause can be
given for an enumeration type or a record type declared by a derived type
declaration.

The index subtype for the aggregate used in an enumeration representation
clause is the base type of the enumeration type.

A record representation clause for a first named record subtype can specify
the representation of any component that belongs to the record's base type,
e-ven if the subtype is constrained.

lquesto , 87-01-28

],3.1 (4 : ys:

the elaboration of the type definition for a numeric or
derived type creates both a base type and a subtype of the base
type.

3.3.1(5) further says:

The simple name declared by a full type declaration denotes the
declared type, unless the type declaration declares both a base
type and a subtype of the base type, in which case the simple
name denotes the subtype, and the base type is anonymous.

It is clear, therefore, that the name declared by a derived type declaration
denotes a subtype, not a type. Now 13.1(3) says:

a first named subtype is ... a subtype declared by a type
declaration, the base type being therefore anonymous. ... An
enumeration representation clause is only allowed for an
enumeration type; a record representation clause, only for a
record type.

Since this paragraph defines the difference between a "type" and a "first
named subtype," it is especially significant that the rule for enumeration

Representation clauses for derived enumeration and record typesAI-00422/06 2
88-05-23 BI WJ

and record representation clauses only uses the word type. The clear
conclusion is that an enumeration representation clause and a record
representation clause cannot be given for a derived enumeration type or a
derived record type. This does not seem to be the intent, however, since
13.6(2) gives an example of a record representation clause for a derived
recor.-I tyn, .

Assuming Lhat the intent was to allow a representation clause for a derived
record oc enumeration type when there is no constraint imposed on the derived
type, can a record representation clause or enumeration representation clause
be given if the derived type declaration includes a constraint? Consider the
followgng declarations:

type REC (D : POSITIVE) is
record

case D is
when 1..10 ->

Cl : INTEGER range 0..15;
when others ->

C2 : STRING (1..10);
end case;

end record;

type D REC is new REC (3);
For D REC use ... ;

31iont rbe record representation clause only mention the components that
occ~t :T) iLhe subtype?

For cb:cived enumeration types, similar questions arise. For example,
.ons'4er'

Lype ENUM is (A, B, C);
type D ENUM is new ENUM range A..B;
for DENUM use ... ;

It is unclear what array aggregate can be written for DENUM's representation
clause. In the above case, can the aggregate only specify the representation
for literals A and B?

!recommendation 87-01-28

A record representation clause can be given for a first named record subtype.

An enumeration representation clause can be given for a first named
enumeration subtype.

!discussion 87-03-13

13.6(1) says:

At most one representation clause is allowed for a given type and
a given aspect of its representation. Hence, if an alternative
representation is needed, it is necessary to declare a second

Representation clauses for derived enumeration and record typesAI-00422/06 3
88-05-23 BI WJ

type, derived from the first, and to specify a different
representation for the second type.

This wording, plus the example given in this section, show that the intent
was to allow a record representation clause to be given for a derived record
type. Tf the derived type is a subtype of the parent type (i.e., if a
constraint was imposed by the derived type definition), the record
representation clause can nonetheless be given fcr the full type (since
13.4(6) speaks of allowing "at most one component clause ... for each
component of the record TYPE", i.e., for each component of the base type).

Similarly, it was the intent to allow an enumeration representation clause to
be given for a derived enumeration type. Any constraint given in the derived
type declaration is to be ignored when giving the enumeration clause for the
derived type, since 13.3(3) says the aggregate's index subtype is the
enumeration type, i.e., the base type of the derived type.

Ada Commentary ai-00430-bi.wj downloaded
onl Tue Aug 9 14:29:48 EDT 1988

Using an enumeration literal does not raise PROGRAMERROR AI-00430/05 1
88-05-23 BI WJ

!standard 03.09 (08) 88-05-23 AI-00430/05
!standard 03.05.01 (03)
!class binding interpretation 87-02-17
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!statuq approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!st.atus panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 87-01-19
!status received 86-06-19
!references 83-00748
!topic Using an enumeration literal does not raise PROGRAMERROR

!summary 87-01-21

The use of an enumeration literal (i.e., a call of the corresponding
parameterless function) does not raise PROGRAMERROR.

!question 87-01-19

3.5.1(3) states:

Each enumeration literal specification is the declaration of the
corresponding enumeration literal: this declaration is
equivalent to the declaration of a parameterless function, the
designator being the enumeration literal, and the result type
being the enumeration type. rhe elaboration of an enumeration
type definition ... incluides that of every enumeration literal
specification.

ihQ eliboration of an enumeration type definition includes the elaboration of
a function declaration for each enumeration literal; but there is no
elaboration of the corresponding function bodies. Will the use of an
enumeration literal (i.e., i. function call) in an expression raise PROGRAM
ERROR (3.9(5, 8))?

!recommendation 87-01-21

The implicitly declared function body for an enumeration literal is
elaborated when the corresponding enumeration literal specification is
elaborated.

!discussion 87-01-21

The declaration of an enumeration literal is equivalent to the declaration of
a parameterless function. The body of this function is declared implicitly
and must be elaborated. To ensure calls of an enumeration literal will not
raise PROGRAM ERROR, it is sufficient and reasonable to assume that the body
is elaborated when the corresponding enumeration literal specification is
elaborated.

Ada Commentary ai-00431--ra.wj downloaded on Tue Aug 9 16:53:16 EDT 1988

Predefined logical operators for boolean arrays AI-00431/05 1
88-05-23 ra WJ

!standard 04.05.01 (03) 88-05-23 AI-00431/05
!class ramification 87-01-21
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 87-01-19
!status received 86-06-19
:references 83-00746
!topic Predefined logical operators for boolean arrays

!summary 87-01-21

Predefined logical operations on boolean arrays are performed on a component-
by-component basis, using the predefined logical operation for the component
type (even if a user-defined logical operation for the component type is
visible and hides the predefined one).

!question 87-12-07

Consider the following example:

procedure EXAMPLE is
package P is

type NB is new BOOLEAN; -- (1)
function "and" (LEFT, RIGHT in NB) return NB; -- (2)

end P;
package body P is

function "and" (LEFT, RIGHT : in NB) return NB is
begin

return NB(not (BOOLEAN(LEFT) and BOOLEAN(RIGHT)));
end "and";

end P;
begin

declare
use P;
type ARR is array (INTEGER range <>) of NB; -- (3)
Al, A2, B : ARR (1..4);

begin
Al (TRUE, TRUE, FALSE, FALSE);
A2 :- (TRUE, FALSE, TRUE, FALSE);
B :- Al and A2; -- (4)

end;
end EXAMPLE;

The predefined logical operators for the boolean type NB are implicitly
declared at (1). The predefined AND operator for NB is overloaded and hidden
by the user-defined AND operator at (2). A one-dimensional array type whose
components are of type NB is declared at (3), together with the predefined
logical operators for this one-dimensional array type. What does the AND
operator applied to Al and A2 do? In particular, which AND operation for
components is used at (4) (the hidden predefined one or the user-defined
one)?

Predefined logical operators for boolean arrays AI-00431/05 2
88-05-23 ra WJ

!response 87-01-21

The only AND operator applicable at (4) is the predefined operator implicitly
declared at (3). 4.5.1(3) states:

The operations on arrays are performed on a component-by-
component basis on matching components, if any (as for equality,
see 4.5.2).

The pazenthetical phrase not only defines how components match, but also
indicates which operation is applied on a component-by-component basis. For
the equality operation on arrays, 4.5.2(5) states:

For two array values ... of the same type, the left operand is
equal to the right operand if and only if for each component of
the left operand there is a matching component of the right
operand and vice versa; and the values of matching components are
equal, as given by the predefined equality operator for the
component type.

Thus, logical operations on boolean arrays are performed on matching
components, using the corresponding predefined logical operation for the
component type (even if a user-defined logical operator for the same
component type is visible and hides the predefined one). Thus, the AND
operation that is applied on a component-by-component basis at (4) is the
hidden predefined operation implicitly declared at (1), not the user-defined
,pera on declared at (2).

Al, (4), B should be assigned the value (TRUE, FALSE, FALSE, FALSE), not the
,ali. FALSE, TRUE, TRUE, TRUE).

Ada Commentary ai-00441-ra.wj downloaded on Tue Aug 9 16:53:14 EDT 1988

A task without dependents can be completed but not terminated AI-00441/06 1
88-05-23 r3 WJ

!standard 09.04 (06) 88-05-23 AI-00441/06
!class ramification 86-07-10
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!st.atv, approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved (10-0-3) 87-02-17 (by ballot)
!status panel/committee-approved (8-1-1) 86-11-13 (pending letter ballot)
!status work-item 86-08-12
!status received 86-07-10
Ireferences 83-00775

!topic A task without dependents can be completed but not terminated

!summary 87-01-19

A task that has no dependent tasks can be completed but not yet terminated,
i.e., T'CALLABLE can be FALSE when T'TERMINATED is not yet TRUE.

!question 86-12-18

9.4(6) says:

If a task has no dependent task, its termination takes place when
it has completed its execution. ... If a task has dependent
tasks, its termination takes place when the execution of the task

. ompleted and all dependent tasks are term- inated.

For a L-4k with no dependents, does the use of "when" imply that termination
takers place at the same time as completion? In particular, if a task without
iep.-erdents is aborted, is it possible for T'CALLABLE to be FALSF anJ T'
TERMINAT D also to bp FALSE?

!response 87-12-07

In 9.4(6), "when" specifies a condition that is to be satisfied, not a time
at which an action occurs. In particular, since completion and termination
are distinct states of a task (as is indicated by the rule for tasks that
have dependents), there is no reason to read the rules as specifying that the
transition between these states takes place "instantaneously" when the
specified conditions are satisfied. In general, a task need not be
terminated as soon as the conditions for termination are satisfied. In
short, it is possible for a task without dependents to be completed but not
yet terminated, i.e., T'TERMINATED can be FALSE even though T'CALLABLE is
FALSE. This is especially the case if a task is aborted while engaged in a
rendezvous with the caller.

Ada Commentary ai-00455-bi.wj downloaded on Wed Aug 10 17:01:03 EDT 1988

Raising an exception before the sequence of statements AI-00455/05 1
88-06-29 BI WJ

!standard 11.04.01 (03) 88-06-29 AI-00455/05
!class binding interpretation 86-08-12
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board (21-0-0) 87-02-19
!status panel/committee-approved 86-10-15 (reviewed)
!status panel/committee-approved (5-0-0) 86-09-11 (pending editorial review)
!status work-item 86-08-12
!status received 86-08-12
!references 83-00772
!topic Raising an exception before the sequence of statements

!summary 86-09-17

If an exception is raised due to the attempt to activate a task and the
exception is raised after the elaboration of a declarative part and just
before the execution of a sequence of statements, the sequence of statements
is not executed and control is transferred in the same manner as for an
exception raised in the sequence of statements.

!question 88-06-29

11.4.1(1-4) specify the effect of raising an exception "in" the sequence of
statements. 9.3(2-3) explain that the activation of a task can occur just
befor' I:he sequence of statements in a frame, and that this activat'on
tttempt can cause an exception to be zaised (PROGRAMERROR or TASKINGERROR)
if the attempt is unsuccessful. Since the raising of such exceptions is not,
it;-i,-y speaking, covered by the wording of 11.4.1(1-4), is not the effect

i.;Jcn them undefined?

L.commendation 86-09-17

If an exception is raised due to the attempt to activate a task and the
exception is raised after the elaboration of a declarative part and just
before the execution of a sequence of statements, the sequence of statements
is not executed and control is transferred in the same manner as for an
exception raised in the sequence of statements.

!discussion 86-09-17

The discussion of the effect of raising an exception in 11.4.1 does not cover
the case when the exception is raised by the attempt to activate a task
object declared by an object declaration, since this attempt occurs just
before the execution of a sequence of statements and just after completing
the elaboration of a declarative part. Although the wording does not,
technically speaking, cover this case, the intent is clear: raising such an
exception means the sequence of statements is not executed and control is
transferred in the same manner as for an exception raised in the sequence of
statements.

!/

Ada Commentary ai-00464-bi.wj downloaded on Wed Aug 10 09:59:55 EDT
1988

Delay statements executed by the environment task AI-00464/05 1
88-05-23 BI WJ

!standard 09.06 (01) 88-05-23 AI-00464/05
!class binding interpretation 86-10-02
!status approved by WG9/AJPO 88-02-05
I!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-02-18 (reviewed)
!status panel/conmittee-approved (8-0-0) 86-11-13 (pending editorial review)
!status work-item 86-10-15
!status received 86-10-02
!references AI-00222, 83-00813
!topic Delay statements executed by the environment task

!summary 87-01-19

Delay statements can be executed by the environment task when a library
package is elaborated. Such statements delay the environment task.

!question 86-10-16

9.6(1) says:

The execution of a delay statement ... suspends further
execution of the task that executes the delay statement ...

If a delay statement is given in the statements of a library package or in a
subprogram that is executed during the elaboration of a library package, what
task i.s delayed?

recmtndation 87-01-19

Xfela, ,atements can be executed by the environment task when a library
rpAckaje L.s elaborated. Such statements delay the environment task.

!diacussion 87-01-19

10.I(8) says:

Each main program acts as if called by some environment task;

For this reason, a delay statement is allowed in the main program and delays
the environment task. Since library packages are elaborated by the
environment task (see AI-00222), delay statements are also allowed in library
packages. Delay statements executed by the environment task during the
elaboration of library units delay the environment task.

Ada Commentary ai-00466-bi.wj downloaded on Wed Aug 10 09:59:54 EDT 1988

I/O performed by library tasks AI-00466/04 1

88-05-23 BI WJ

!standard 14.01 (07) 88-05-23 AI-00466/04
!class binding interpretation 86-10-02

1 !status approved by WG9/AJPO 88-02-05
1 !status approved by Director, AJPO 88-02-05
4 !status approved by WG9/Ada Board 87-12-07

!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-01-19 (reviewed)
!status panel/committee-approved (8-0-0) 86-11-13 (pending editorial review)
!status work-item 86-10-15
!status received 86-10-02
!references AI-00222, AI-00399, 83-00814
!topic I/O performed by library tasks

!summary 86-12-15

The language does define what happens to external files after the completion
of the main program and before completion of all the library tasks.

!question 86-10-16

14.1(7) says:

The language does not define what happens to external files after
the completion of the main program (in particular, if
corresponding files have not been closed).

Suppose an external file is opened by a task whose master is a library
package and execution of the main program is completed before the library
task terminates. Does 14.1(7) mean to imply that the external file can be
closed implicitly after completion of the main program even though the file
I.s still being accessed by the library task?

!recommendation 86-12-15

The language does define what happens to external files after the completion
of the main program and before completion of all the library tasks.

!discussion 86-12-15

AI-00399 considers the program as a whole terminated when the main program
and all library tasks have terminated. 14.1(7) was only intended to note
that when the main program and all library tasks have finished, the
disposition of external files is not further specified by the language. In
particular, whether the files are closed, saved, or modified, depends on the
operating system and actions by operators, programmers, etc. However, the
intent was that any I/O operations performed by library tasks be executed in
accordance with the Standard even if the main program has completed (e.g.,
even if the main program has a null body).

Ada Commentary ai-00467-cr.wj downloaded on Tue Aug 9 14:29:47 EDT 1988

Correction to AI-00179/06 AI-00467/04 1
88-05-23 CR WJ

Istandard 03.05.10 (08) 88-05-23 AI-00467/04
!class correction 86-10-10
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/comnittee-approved 87-01--19 (reviewed)
!status panel/committee-approved (5-0-1) 86-11-14 (pending editorial review)
!status work-item 86-10-10
!status received 86-10-02
!references 83-00803
!topin. Correction to AI-00179/06

!summary 86-10-13

In the discussion section of AI-00179/06, the upper bound of SG's range
constraint and the model interval in the subsequent discussion are incorrect
because the model numbers for subtype SG are the same as the model numbers
for type G.

!question 86-10-10

The discussion section of AI-00179/06 contains the following example:

type G is delta 0.01 range 1.00 .. 10.00;
for G'SMALL use 0.01;
Aibtype SG is F delta 0.1 range 1.0 .. 9.95;

rhie olsc.,,sion then goes on to say that for subtype SG, 9.9 and 10.0 are
conr3cwi;.ve model numbers. This statement is incorrect since a length clause
specifjin-i SMALL is given for type G, and hence, SG and G have the same model

The example should be corrected so SG has the upper bound 9.995, and the
following discussion should be modified accordingly.

!recomuendation 86-10-13

Correct the discussion of AI-00179 by replacing:

type G is delta 0.01 range 1.00 .. 10.00;
for G'SMALL use 0.01;
subtype SG is F delta 0.1 range 1.0 .. 9.95;

For the subtype SG, 9.9 and 10.0 are consecutive model numbers
(3.5.9(14)). It is implementation dependent whether the upper
bound of SG is represented as the model number 9.9 or the model
number 10.0. Depending on the implementation's choice, the value
returned by SG'FORE will be either 2 or 3. In addition, note
that the bounds of SG need not be given by static expressions.
If the upper bound is non-static and has a value lying in the
model interval 9.9 to 10.0, SG'FORE's value will be
implementation dependent (and must be computed at run-time). The
fact that 'FORE may return implementation dependent values should
be taken into consideration by programmers.

Correction to AI-00179/06 AI-00467/04 2
88-05-23 CR WJ

with:

type G is delta 0.01 range 1.00 .. 10.00;
for G'SMALL use 0.01;
subtype SG is F delta 0.01 range 1.00 .. 9.995;

For the subtype SG, 9.99 and 10.00 are consecutive model numbers
(3.5.9(14)). It is implementation dependent whether the upper
bound of SG is represented as the model number 9.99 or the model
number 10.0. Depending on the implementation's choice, the value
returned by SG'FORE will be either 2 or 3. In addition, note
that the bounds of SG need not be given by static expressions.
If the upper bound is non-static and has a value lying in the
model interval 9.99 to 10.00, SG'FORE's value will be
implementation dependent (and must be computed at run-time). The
fact that 'FORE may return implementation dependent values should
be taken into consideration by programmers.

!discussion 86-10-10

For the discussion section of commentary AI-00179/06 (as approved by the
AJPO, Ada Board, and ISO WG9) to be correct, the example should be changed so
the upper bound of SG is 9.995. The model interval in the discussion will
then range from 9.99 to 10.00.

Ada Commentary ai-00475-bi.wj downloaded on Wed Aug 10 09:59:25 EDT 1988

apa rM m.

Multiplication of fixed point values by negative integers AI-00475/05 1
88-05-23 BI WJ

!standard 04.05.05 (08) 88-05-23 AI-00475/05
!class binding interpretation 86-10-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (8-0-0) 87-02-18 (pending editorial review)
!status work-item 87-01-15
!status received 86-10-13
!references 83-00829
!topic Multiplication of fixed point values by negative integers

.sumiy 87-03-17

If the integer in an integer multiplication of a fixed point value is
negative, the multiplication is equivalent to changing the sign of the fixed
point value followed by repeated addition.

!question 87-01-15

4.5.5(8) says:

Integer multiplication of fixed point values is equivalent to
repeated addition.

'liat. i the effect of multiplication by a negative integer?

rc,,ircendation 87-03-17

1f the i.nteger in an integer multiplication of a fixed point value is
,.cg,.i.icL, the multiplication is equivalent to changing the sign of the fixed
ooint value followed by repeated addition.

!discussion 87-01-15

('ercv fthe intent in defining the effect of multiplication of a fixed point
value by an integer was to specify that the result have the proper sign.

Ada Commentary ai-00493-ra.wj downloaded on Wed Aug 10 09:59:23 EDT 1988

Operator symbols that represent the same operator AI-00493/05 1
88-05-23 ra WJ

!standard 06.03.01 (04) 88-05-23 AI-00493/05
!class ramification 86-11-10
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
'stati.s approved by Ada Board 87-07-30
!statius panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 87-01-16
!status received 86-11-10
!references 83-00840
!topic Operator symbols that represent the same operator

!summary 87-01-16

Two string literals serving as operator symbols represent the same operator
if the string literals are identical or if the only difference is that some
letters appear in upper case rather than lower case.

!question 87-03-16

6.3.1(4) says:

A string literal given as an operator symbol can be replaced by a
different string literal if and only if both represent the same
,rperator.

W.ho, ,teant by "represent the same operator"? In particular, consider the

vo]l., I r,, xample:

I nction "-" (X, Y : INTEGER) return INTEGER renames STANDARD."+";

pLocedure P (X : INTEGER "0"(3, 4));

procedure P (X : INTEGER := "-"(3, 4)) is -- legal? (no)
begin ... end P;

Do the operator symbols "+" and "-" represent the same operator?

!response 87-01-16

6.1(3) says "the case of letters (in an operator symbol] is not significant."
This means the string literals "AND" and "and", for example, can serve as
operator symbols for the same operator. This is the sense in which different
operator symbols can represent the same operator.

6.3.1(5) requires that corresponding lexical elements be given the same
meaning by the visibility and overloading rules, i.e., corresponding lexical
elements must be associated with the same declaration (8.3(2-3)). In the
example given, the two subprogram specifications do not conform because the
operator symbols are associated with different declarations by the visibility
rules.

Ad n - d

Ada Commentary ai-00502-cr.wj downloaded
on Wed Aug 10 09:59:02 EDT 1988

Error in AI-00170/06 Al-00502/05 1
88-05-23 CR WJ

!standard 08.05 (05) 88-05-23 AI-00502/05
!class correction 86-11-19
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
is',aLi. approved by Ada Board 87-07-30
!statusi panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (9-0-0) 87-02-17 (pending editorial review)
!s :atu,; work-item 87-01-16
!status received 86-11-19
!references 83-0085S
!topic Error in AI-00170/06

!suniraty 87-01-16

The deciaration of type SINT in the question's example should be replaced
with a subtype declaration so SINT has the type INTEGER.

!question 87-03-17

The following example appears in Al-00170/06:

type SINT is range 0..100;
type VREC (N SINT := 0) is

record
S : STRING (1..N);

end record;

~-L' .ui component declaration illegal since STRING's index subtype is

i ... <,,, ,at on 87-01--16

wn.~ce the declaration of SINT as follows:

subtype SINT is NATURAL range 0..100;

!discussion 87-03-17

Since STRING's index subtype is POSITIVE, SINT must be declared as a subtype
of INTEGER.

Ada Commentar donI on W

Ada Commentary ai-O0503-cr.wj downloaded on Wed Aug 10 09:59:oa EDT 1988

Error in AI-00258/05 AI-00503/04 1
88-05-23 CR WJ

!standard 13.07.02 (07) 88-05-23 AI-00503/04
!standard A (34)
!class correction 86-11-19
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved (9-0-0) 87-02-17
!status work-item 87-01-16
!status received 86-11-19
!references 83-00860
!topic Error in AI-00258/05

!summary 87-01-16

The renaming declaration for Ren C2 in AI-00258/05 is illegal since a type
mark is required instead of a subtype indication. An appropriate subtype
declaration should be added to the example.

!question 87-01-16

AI-00258/05 contains the following declarations:

package P is
Obj : R;
Ren C2 : String (I..N) renames F.alI.C2;

end P;

:ince a renaming declaration requires a type mark instead of a subtype
inJi,:ation (see 8.5(2)), isn't the declaration of RenC2 illegal?

1recotrmendation 87-01-16

Replace the declaration of package P with the following:

package P is
subtype STRN is STRING(1..N);
Obj : R;
Ren C2 : STR N renames F.all.C2;

end P;

!discussion 87-01-16

Since a renaming declaration requires a type mark instead of a subtype
indication, STRING(1. .N) must be replaced with the name of an appropriate
subtype.

Ada Commentary ai-00508-bi.wj downloaded on Wed Aug 10 09:58:39 EDT 1988

The safe numbers of a fixed point subtype AI-00508/03 1
88-05-23 BI WJ

!standard 03.05.09 (11) 88-05-23 AI-00508/03
!class binding interpretation 86-11-14
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-03-16 (reviewed)
!status panel/committee-approved (6-0-0) 86-11-14 (pending editorial review)
!status work-item 86-08-08
!status received 84-03-13
!references 83-00750
!topic The safe numbers of a fixed point subtype

!summary 86-12-28

The safe numbers of a fixed point subtype are the safe numbers of its base
type.

!question 86-12-28

3.5.9(11) defines the safe numbers of a fixed point TYPE. Shouldn't there
also be a definition for the safe numbers of a fixed point SUBtype (as there
is for floating point subtypes; see 3.5.7(9)).

!recommendation 86-12-28

The safe niumbers of a fixed point subtype are the safe numbers of its base
type.

!disciis4ion 87-03-13

Since 3.5.7(9) defines the safe numbers of a floating point subtype, a
similat definition should have been given for fixed point subtypes. The
intended definition was that the safe numbers of a subtype be those of its
base type. Safe numbers are used (in the Standard) to specify the accuracy
of real numeric operations. 4.5.7(8) defines the accuracy of all real
numeric operations in terms of the safe numbers (since the model numbers of a
type are a subset of the safe numbers and the rules for computing with safe
numbers are the same as the rules for computing with model numbers). Since
all numeric operations are declared for types rather than subtypes, these
operations are performed using the safe numbers of the base type, and hence,
it was intended for the safe numbers of a real subtype to be the same as the
safe numbers of its base type.

Ada Commentary ai-00511-cr.wj downloaded on Wed Aug 10 09:58:37 EDT 1988

Error in AI-00388/04 AI-00511/05 1
88-05-23 CR WJ

!standard 02.08 (04) 88-05-23 AI-00511/05
!class correction 87-01-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/comittee-approved (9-0-0) 87-02-17 (pending editorial review)
!status work-item 87-01-16
!status received 87-01-13
!references 83-00871
!topic Error in AI-00388/04

!summary 87-01-16

The example given in the response is syntactically incorrect unless "package
P" is replaced either with "procedure P" or with "package P is end".

!question 87-01-16

The response section contains the following example, which is asserted to be
legal:

generic
pragma PAGE;
X : INTEGER;
pragma PAGE;

pakage P;

Ke example illegal because "is end" is required after "package P"?

'::r , :...Yton 87-01-13

Rewc ;L the example in the response section as follows:

geaeric
pragma PAGE;
X : INTEGER;
pragma PAGE;

procedure P;

'discussion 87-03-17

To make the example syntactically legal, "package" should be replaced with
"procedure".

Ada Commentary ai-00516-bi.wj downloaded on Tue Aug 9 17:00:46 EDT 1988

The safe interval for a fixed/integer result AI-00516/05 1
88-05-23 BI WJ

!standard 04.05.07 (04) 88-05-23 AI-00516/05
!class binding interpretation 86-10-13
!status approved by WG9/AJPO 88-02-05
!status approved by Director, AJPO 88-02-05
!status approved by WG9/Ada Board 87-12-07
!status approved by Ada Board 87-07-30
!status panel/committee-approved 87-05-06 (reviewed)
!status panel/committee-approved (8-0-0) 87-02-18 (pending editorial review)
!status work-item 87-01-15
!status received 86-10-13
!references 83-00829
!topic The safe interval for a fixed/integer result

!summary 87-03-18

When a fixed point value is divided by an integer value, the result model
interval is determined by considering the integer value to be a model
interval consisting of a single integer value.

!question 87-03-18

4.5.5(8) says:

Division of a fixed point value by an integer does not involve a
change in type but is approximate (see 4.5.7).

The rates in 4.5.7 do not, however, specify what the model interval of an
integer is, so, strictly speaking, the accuracy of such divisions is not
defined. Is the intent to apply the usual rules given that the integer value
is a safe number?

! recemmendation 87-03-18

For purposes of applying the rules in 4.5.7, an integer value is considered
to be a model interval consisting of a single integer value.

!discussion 87-06-11

Clearly, when determining the result model interval for division of a fixed
point value by an integer, the rules in 4.5.7 should be applied with the
integer value being considered to be a model interval consisting of a single
value.

